Density Functional Theory (DFT) method implementation for metalquicha
!! Density Functional Theory (DFT) method implementation for metalquicha module mqc_method_dft !! Implements Kohn-Sham DFT quantum chemistry method !! Provides energy and gradient calculations using self-consistent field !! with exchange-correlation functionals. use pic_types, only: dp use mqc_method_base, only: qc_method_t use mqc_result_types, only: calculation_result_t use mqc_physical_fragment, only: physical_fragment_t implicit none private public :: dft_method_t, dft_options_t type :: dft_options_t !! DFT calculation options character(len=32) :: basis_set = 'sto-3g' !! Basis set name character(len=32) :: functional = 'b3lyp' !! Exchange-correlation functional integer :: max_iter = 100 !! Maximum SCF iterations real(dp) :: energy_tol = 1.0e-8_dp !! Energy convergence threshold real(dp) :: density_tol = 1.0e-6_dp !! Density matrix convergence threshold logical :: spherical = .true. !! Use spherical (true) or Cartesian (false) basis logical :: verbose = .false. !! Print SCF iterations ! Grid settings character(len=16) :: grid_type = 'medium' !! Integration grid quality integer :: radial_points = 75 !! Number of radial grid points per atom integer :: angular_points = 302 !! Number of angular grid points (Lebedev) ! Density fitting logical :: use_density_fitting = .false. !! Use RI-J approximation character(len=32) :: aux_basis_set = '' !! Auxiliary basis set for density fitting ! Dispersion correction logical :: use_dispersion = .false. !! Add empirical dispersion correction character(len=8) :: dispersion_type = 'd3bj' !! Dispersion type: "d3", "d3bj", "d4" ! DIIS acceleration logical :: use_diis = .true. !! Use DIIS for SCF convergence integer :: diis_size = 8 !! Number of Fock matrices in DIIS end type dft_options_t type, extends(qc_method_t) :: dft_method_t !! DFT method implementation !! !! Kohn-Sham DFT with configurable exchange-correlation functional, !! integration grid, and optional density fitting. type(dft_options_t) :: options contains procedure :: calc_energy => dft_calc_energy procedure :: calc_gradient => dft_calc_gradient procedure :: calc_hessian => dft_calc_hessian end type dft_method_t contains subroutine dft_calc_energy(this, fragment, result) !! Calculate electronic energy using Kohn-Sham DFT !! !! TODO: Implementation requires: !! 1. Build basis set from fragment geometry !! 2. Compute one-electron integrals (S, T, V) !! 3. Set up integration grid for XC !! 4. Initial density guess (SAD or core Hamiltonian) !! 5. SCF iterations: !! a. Build Coulomb matrix J !! b. Evaluate XC energy and potential on grid !! c. Build Fock matrix F = H + J + Vxc !! d. Apply DIIS if enabled !! e. Diagonalize F -> new density !! f. Check convergence !! 6. Compute final energy class(dft_method_t), intent(in) :: this type(physical_fragment_t), intent(in) :: fragment type(calculation_result_t), intent(out) :: result if (this%options%verbose) then print *, "DFT: Calculating energy using ", trim(this%options%functional) print *, "DFT: Basis set: ", trim(this%options%basis_set) print *, "DFT: Fragment has", fragment%n_atoms, "atoms" print *, "DFT: nelec =", fragment%nelec print *, "DFT: charge =", fragment%charge print *, "DFT: Grid type: ", trim(this%options%grid_type) if (this%options%use_density_fitting) then print *, "DFT: Using density fitting (RI-J)" end if if (this%options%use_dispersion) then print *, "DFT: Dispersion correction: ", trim(this%options%dispersion_type) end if end if ! Placeholder: Return dummy energy ! TODO: Implement actual DFT calculation result%energy%scf = -1.0_dp*fragment%n_atoms ! Placeholder result%has_energy = .true. if (this%options%verbose) then print *, "DFT: [STUB] Energy =", result%energy%total() end if end subroutine dft_calc_energy subroutine dft_calc_gradient(this, fragment, result) !! Calculate energy gradient using Kohn-Sham DFT !! !! TODO: Implementation requires: !! 1. Converged SCF (call calc_energy to get density) !! 2. Compute gradient contributions: !! a. One-electron integral derivatives !! b. Two-electron integral derivatives (or RI-J) !! c. XC potential derivatives (grid-based) !! d. Overlap derivative (Pulay force) !! 3. Optional: dispersion gradient class(dft_method_t), intent(in) :: this type(physical_fragment_t), intent(in) :: fragment type(calculation_result_t), intent(out) :: result if (this%options%verbose) then print *, "DFT: Calculating gradient using ", trim(this%options%functional) end if ! First get energy (and converged density) call this%calc_energy(fragment, result) ! Allocate and fill dummy gradient allocate (result%gradient(3, fragment%n_atoms)) result%gradient = 0.0_dp ! Placeholder result%has_gradient = .true. if (this%options%verbose) then print *, "DFT: [STUB] Gradient computed" end if end subroutine dft_calc_gradient subroutine dft_calc_hessian(this, fragment, result) !! Calculate energy Hessian using Kohn-Sham DFT !! !! TODO: Analytical Hessian requires: !! 1. Converged SCF and gradient !! 2. Coupled-perturbed Kohn-Sham (CPKS) equations !! 3. Second derivatives of integrals !! 4. XC kernel contributions !! Alternative: Use finite difference of gradients (via driver) class(dft_method_t), intent(in) :: this type(physical_fragment_t), intent(in) :: fragment type(calculation_result_t), intent(out) :: result if (this%options%verbose) then print *, "DFT: Analytical Hessian not yet implemented" print *, "DFT: Use finite difference of gradients instead" end if ! For now, just compute energy call this%calc_energy(fragment, result) result%has_hessian = .false. end subroutine dft_calc_hessian end module mqc_method_dft