Multi-Configurational Self-Consistent Field (MCSCF) method implementation
!! Multi-Configurational Self-Consistent Field (MCSCF) method implementation module mqc_method_mcscf !! Implements CASSCF/CASCI quantum chemistry methods !! Provides energy and gradient calculations using complete active space !! with optional perturbative corrections (CASPT2/NEVPT2). use pic_types, only: dp use mqc_method_base, only: qc_method_t use mqc_result_types, only: calculation_result_t use mqc_physical_fragment, only: physical_fragment_t implicit none private public :: mcscf_method_t, mcscf_options_t type :: mcscf_options_t !! MCSCF/CASSCF calculation options character(len=32) :: basis_set = 'sto-3g' !! Basis set name logical :: spherical = .true. !! Use spherical (true) or Cartesian (false) basis logical :: verbose = .false. !! Print iteration details ! Active space definition integer :: n_active_electrons = 0 !! Number of active electrons (CAS) integer :: n_active_orbitals = 0 !! Number of active orbitals (CAS) integer :: n_inactive_orbitals = -1 !! Number of inactive (doubly occupied) orbitals !! -1 means auto-determine from nelec and active electrons ! State-averaging integer :: n_states = 1 !! Number of states for state-averaged CASSCF real(dp), allocatable :: state_weights(:) !! Weights for state averaging (must sum to 1) ! Convergence settings integer :: max_macro_iter = 100 !! Maximum macro (orbital optimization) iterations integer :: max_micro_iter = 50 !! Maximum CI iterations per macro step real(dp) :: orbital_tol = 1.0e-6_dp !! Orbital gradient convergence threshold real(dp) :: energy_tol = 1.0e-8_dp !! Energy convergence threshold real(dp) :: ci_tol = 1.0e-8_dp !! CI energy convergence threshold ! Orbital optimization algorithm character(len=16) :: orbital_optimizer = 'super-ci' !! Orbital optimizer: "super-ci", "newton-raphson", "ah" (augmented Hessian) ! Perturbative corrections logical :: use_pt2 = .false. !! Apply perturbative correction after CASSCF character(len=16) :: pt2_type = 'nevpt2' !! PT2 type: "caspt2", "nevpt2" real(dp) :: ipea_shift = 0.25_dp !! IPEA shift for CASPT2 (Hartree) real(dp) :: imaginary_shift = 0.0_dp !! Imaginary shift for intruder states end type mcscf_options_t type, extends(qc_method_t) :: mcscf_method_t !! MCSCF/CASSCF method implementation !! !! Complete Active Space SCF with optional state-averaging !! and perturbative corrections. Suitable for: !! - Near-degenerate electronic states !! - Bond breaking/formation !! - Transition metal complexes !! - Excited states type(mcscf_options_t) :: options contains procedure :: calc_energy => mcscf_calc_energy procedure :: calc_gradient => mcscf_calc_gradient procedure :: calc_hessian => mcscf_calc_hessian end type mcscf_method_t contains subroutine mcscf_calc_energy(this, fragment, result) !! Calculate electronic energy using CASSCF !! !! TODO: Implementation requires: !! 1. Build basis set and compute integrals !! 2. Initial orbital guess (HF or read from file) !! 3. Partition orbitals: inactive, active, virtual !! 4. Macro iterations: !! a. Transform integrals to MO basis !! b. Solve CI in active space (Davidson or direct) !! c. Build 1- and 2-RDMs from CI vector !! d. Compute orbital gradient !! e. Update orbitals (super-CI, Newton-Raphson, etc.) !! f. Check convergence !! 5. Optional: CASPT2/NEVPT2 correction class(mcscf_method_t), intent(in) :: this type(physical_fragment_t), intent(in) :: fragment type(calculation_result_t), intent(out) :: result integer :: n_inactive if (this%options%verbose) then print *, "MCSCF: Calculating CASSCF energy" print *, "MCSCF: Basis set: ", trim(this%options%basis_set) print *, "MCSCF: Fragment has", fragment%n_atoms, "atoms" print *, "MCSCF: nelec =", fragment%nelec print *, "MCSCF: charge =", fragment%charge print *, "MCSCF: Active space: (", this%options%n_active_electrons, ",", & this%options%n_active_orbitals, ")" ! Calculate inactive orbitals if (this%options%n_inactive_orbitals < 0) then n_inactive = (fragment%nelec - this%options%n_active_electrons)/2 else n_inactive = this%options%n_inactive_orbitals end if print *, "MCSCF: Inactive orbitals:", n_inactive if (this%options%n_states > 1) then print *, "MCSCF: State-averaged over", this%options%n_states, "states" end if if (this%options%use_pt2) then print *, "MCSCF: Will apply ", trim(this%options%pt2_type), " correction" end if end if ! Validate active space if (this%options%n_active_electrons <= 0 .or. this%options%n_active_orbitals <= 0) then print *, "MCSCF: ERROR - Active space not defined!" print *, "MCSCF: Set n_active_electrons and n_active_orbitals in config" result%has_error = .true. return end if ! Placeholder: Return dummy energy ! TODO: Implement actual CASSCF calculation result%energy%scf = -1.0_dp*fragment%n_atoms ! Placeholder result%has_energy = .true. if (this%options%verbose) then print *, "MCSCF: [STUB] CASSCF Energy =", result%energy%total() end if end subroutine mcscf_calc_energy subroutine mcscf_calc_gradient(this, fragment, result) !! Calculate energy gradient using CASSCF !! !! TODO: Implementation requires: !! 1. Converged CASSCF (orbitals and CI) !! 2. Solve Z-vector (CPHF-like) equations for response !! 3. Compute gradient contributions: !! a. One-electron derivative terms !! b. Two-electron derivative terms (with 2-RDM) !! c. Orbital response contribution !! d. CI response contribution (for state-specific) !! For state-averaged: gradient of weighted energy class(mcscf_method_t), intent(in) :: this type(physical_fragment_t), intent(in) :: fragment type(calculation_result_t), intent(out) :: result if (this%options%verbose) then print *, "MCSCF: Calculating CASSCF gradient" end if ! First get energy (and converged orbitals/CI) call this%calc_energy(fragment, result) if (result%has_error) return ! Allocate and fill dummy gradient allocate (result%gradient(3, fragment%n_atoms)) result%gradient = 0.0_dp ! Placeholder result%has_gradient = .true. if (this%options%verbose) then print *, "MCSCF: [STUB] Gradient computed" end if end subroutine mcscf_calc_gradient subroutine mcscf_calc_hessian(this, fragment, result) !! Calculate energy Hessian using CASSCF !! !! TODO: Analytical CASSCF Hessian is very complex: !! - Requires second derivatives of integrals !! - Coupled-perturbed MCSCF equations !! - CI second derivatives !! Typically done via finite difference of gradients class(mcscf_method_t), intent(in) :: this type(physical_fragment_t), intent(in) :: fragment type(calculation_result_t), intent(out) :: result if (this%options%verbose) then print *, "MCSCF: Analytical Hessian not implemented" print *, "MCSCF: Use finite difference of gradients instead" end if ! For now, just compute energy call this%calc_energy(fragment, result) result%has_hessian = .false. end subroutine mcscf_calc_hessian end module mqc_method_mcscf