This file is subjec†both to the Fortran Standard Library license, and to additional licensing requirements as it contains translations of other software.
The Fortran Standard Library, including this file, is distributed under the MIT license that should be included with the library’s distribution.
Copyright (c) 2021 Fortran stdlib developers
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sellcopies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
The generic subroutine, ORD_SORT
, is substantially a translation to
Fortran 2008 of the "Rust" sort
sorting routines in
slice.rs
The rust sort
implementation is distributed with the header:
Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT file at the top-level directory of this distribution and at http://rust-lang.org/COPYRIGHT.
Licensed under the Apache License, Version 2.0
so the license for the originalslice.rs
code is compatible with the use
of modified versions of the code in the Fortran Standard Library under
the MIT license.
!! Licensing: !! !! This file is subjec†both to the Fortran Standard Library license, and !! to additional licensing requirements as it contains translations of !! other software. !! !! The Fortran Standard Library, including this file, is distributed under !! the MIT license that should be included with the library's distribution. !! !! Copyright (c) 2021 Fortran stdlib developers !! !! Permission is hereby granted, free of charge, to any person obtaining a !! copy of this software and associated documentation files (the !! "Software"), to deal in the Software without restriction, including !! without limitation the rights to use, copy, modify, merge, publish, !! distribute, sublicense, and/or sellcopies of the Software, and to permit !! persons to whom the Software is furnished to do so, subject to the !! following conditions: !! !! The above copyright notice and this permission notice shall be included !! in all copies or substantial portions of the Software. !! !! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS !! OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF !! MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. !! IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY !! CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, !! TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE !! SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. !! !! The generic subroutine, `ORD_SORT`, is substantially a translation to !! Fortran 2008 of the `"Rust" sort` sorting routines in !! [`slice.rs`](https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs) !! The `rust sort` implementation is distributed with the header: !! !! Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT !! file at the top-level directory of this distribution and at !! http://rust-lang.org/COPYRIGHT. !! !! Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or !! http://www.apache.org/licenses/LICENSE-2.0> or the MIT license !! <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your !! option. This file may not be copied, modified, or distributed !! except according to those terms. !! !! so the license for the original`slice.rs` code is compatible with the use !! of modified versions of the code in the Fortran Standard Library under !! the MIT license. !submodule(pic_sorting) pic_sorting_ord_sort module pic_sorting_ord_sort use pic_types, only: int32, int64, sp, dp, int_index use pic_optional_value, only: pic_optional implicit none public :: ord_sort !! The generic subroutine implementing the `ORD_SORT` algorithm to return !! an input array with its elements sorted in order of (non-)decreasing !! value. Its use has the syntax: !! !! call ord_sort( array[, work, reverse] ) !! !! with the arguments: !! !! * array: the rank 1 array to be sorted. It is an `intent(inout)` !! argument of any of the types `integer(int8)`, `integer(int16)`, !! `integer(int32)`, `integer(int64)`, `real(real32)`, `real(real64)`, !! `real(real128)`, `character(*)`, `type(string_type)`, !! `type(bitset_64)`, `type(bitset_large)`. If both the !! type of `array` is real and at least one of the elements is a !! `NaN`, then the ordering of the result is undefined. Otherwise it !! is defined to be the original elements in non-decreasing order. !! !! * work (optional): shall be a rank 1 array of the same type as !! `array`, and shall have at least `size(array)/2` elements. It is an !! `intent(out)` argument to be used as "scratch" memory !! for internal record keeping. If associated with an array in static !! storage, its use can significantly reduce the stack memory requirements !! for the code. Its value on return is undefined. !! !! * `reverse` (optional): shall be a scalar of type default logical. It !! is an `intent(in)` argument. If present with a value of `.true.` then !! `array` will be sorted in order of non-increasing values in stable !! order. Otherwise index will sort `array` in order of non-decreasing !! values in stable order. !! !!#### Example !! !!```fortran !! ... !! ! Read arrays from sorted files !! call read_sorted_file( 'dummy_file1', array1 ) !! call read_sorted_file( 'dummy_file2', array2 ) !! ! Concatenate the arrays !! allocate( array( size(array1) + size(array2) ) ) !! array( 1:size(array1) ) = array1(:) !! array( size(array1)+1:size(array1)+size(array2) ) = array2(:) !! ! Sort the resulting array !! call ord_sort( array, work ) !! ! Process the sorted array !! call array_search( array, values ) !! ... !!``` private integer, parameter :: & ! The maximum number of entries in a run stack, good for an array of ! 2**64 elements see ! https://svn.python.org/projects/python/trunk/Objects/listsort.txt max_merge_stack = int(ceiling(log(2._dp**64)/ & log(1.6180339887_dp))) type run_type !! Used to pass state around in a stack among helper functions for the !! `ORD_SORT` and `SORT_INDEX` algorithms integer(int_index) :: base = 0 integer(int_index) :: len = 0 end type run_type interface ord_sort !! The generic subroutine interface implementing the `ORD_SORT` algorithm, !! a translation to Fortran 2008, of the `"Rust" sort` algorithm found in !! `slice.rs` !! https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs#L2159 !! `ORD_SORT` is a hybrid stable comparison algorithm combining `merge sort`, !! and `insertion sort`. !! !! It is always at worst O(N Ln(N)) in sorting random !! data, having a performance about 25% slower than `SORT` on such !! data, but has much better performance than `SORT` on partially !! sorted data, having O(N) performance on uniformly non-increasing or !! non-decreasing data. module subroutine int32_ord_sort(array, work, reverse) implicit none !! `int32_ord_sort( array )` sorts the input `ARRAY` of type `integer(int32)` !! using a hybrid sort based on the `"Rust" sort` algorithm found in `slice.rs` integer(int32), intent(inout) :: array(0:) integer(int32), intent(out), optional :: work(0:) logical, intent(in), optional :: reverse end subroutine int32_ord_sort module subroutine int64_ord_sort(array, work, reverse) implicit none !! `int64_ord_sort( array )` sorts the input `ARRAY` of type `integer(int64)` !! using a hybrid sort based on the `"Rust" sort` algorithm found in `slice.rs` integer(int64), intent(inout) :: array(0:) integer(int64), intent(out), optional :: work(0:) logical, intent(in), optional :: reverse end subroutine int64_ord_sort module subroutine sp_ord_sort(array, work, reverse) implicit none !! `sp_ord_sort( array )` sorts the input `ARRAY` of type `real(sp)` !! using a hybrid sort based on the `"Rust" sort` algorithm found in `slice.rs` real(sp), intent(inout) :: array(0:) real(sp), intent(out), optional :: work(0:) logical, intent(in), optional :: reverse end subroutine sp_ord_sort module subroutine dp_ord_sort(array, work, reverse) implicit none !! `dp_ord_sort( array )` sorts the input `ARRAY` of type `real(dp)` !! using a hybrid sort based on the `"Rust" sort` algorithm found in `slice.rs` real(dp), intent(inout) :: array(0:) real(dp), intent(out), optional :: work(0:) logical, intent(in), optional :: reverse end subroutine dp_ord_sort module subroutine char_ord_sort(array, work, reverse) implicit none !! `char_ord_sort( array )` sorts the input `ARRAY` of type `character(len=*)` !! using a hybrid sort based on the `"Rust" sort` algorithm found in `slice.rs` character(len=*), intent(inout) :: array(0:) character(len=len(array)), intent(out), optional :: work(0:) logical, intent(in), optional :: reverse end subroutine char_ord_sort end interface ord_sort contains module subroutine int32_ord_sort(array, work, reverse) integer(int32), intent(inout) :: array(0:) integer(int32), intent(out), optional :: work(0:) logical, intent(in), optional :: reverse if (pic_optional(reverse, .false.)) then call int32_decrease_ord_sort(array, work) else call int32_increase_ord_sort(array, work) end if end subroutine int32_ord_sort module subroutine int64_ord_sort(array, work, reverse) integer(int64), intent(inout) :: array(0:) integer(int64), intent(out), optional :: work(0:) logical, intent(in), optional :: reverse if (pic_optional(reverse, .false.)) then call int64_decrease_ord_sort(array, work) else call int64_increase_ord_sort(array, work) end if end subroutine int64_ord_sort module subroutine sp_ord_sort(array, work, reverse) real(sp), intent(inout) :: array(0:) real(sp), intent(out), optional :: work(0:) logical, intent(in), optional :: reverse if (pic_optional(reverse, .false.)) then call sp_decrease_ord_sort(array, work) else call sp_increase_ord_sort(array, work) end if end subroutine sp_ord_sort module subroutine dp_ord_sort(array, work, reverse) real(dp), intent(inout) :: array(0:) real(dp), intent(out), optional :: work(0:) logical, intent(in), optional :: reverse if (pic_optional(reverse, .false.)) then call dp_decrease_ord_sort(array, work) else call dp_increase_ord_sort(array, work) end if end subroutine dp_ord_sort module subroutine char_ord_sort(array, work, reverse) character(len=*), intent(inout) :: array(0:) character(len=len(array)), intent(out), optional :: work(0:) logical, intent(in), optional :: reverse if (pic_optional(reverse, .false.)) then call char_decrease_ord_sort(array, work) else call char_increase_ord_sort(array, work) end if end subroutine char_ord_sort subroutine int32_increase_ord_sort(array, work) ! A translation to Fortran 2008, of the `"Rust" sort` algorithm found in ! `slice.rs` ! https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs#L2159 ! The Rust version in turn is a simplification of the Timsort algorithm ! described in ! https://svn.python.org/projects/python/trunk/Objects/listsort.txt, as ! it drops both the use of 'galloping' to identify bounds of regions to be ! sorted and the estimation of the optimal `run size`. However it remains ! a hybrid sorting algorithm combining an iterative Merge sort controlled ! by a stack of `RUNS` identified by regions of uniformly decreasing or ! non-decreasing sequences that may be expanded to a minimum run size and ! initially processed by an insertion sort. ! ! Note the Fortran implementation simplifies the logic as it only has to ! deal with Fortran arrays of intrinsic types and not the full generality ! of Rust's arrays and lists for arbitrary types. It also adds the ! estimation of the optimal `run size` as suggested in Tim Peters' ! original `listsort.txt`, and an optional `work` array to be used as ! scratch memory. integer(int32), intent(inout) :: array(0:) integer(int32), intent(out), optional :: work(0:) integer(int32), allocatable :: buf(:) integer(int_index) :: array_size integer :: stat array_size = size(array, kind=int_index) if (present(work)) then if (size(work, kind=int_index) < array_size/2) then error stop "int32_increase_ord_sort: work array is too small." end if ! Use the work array as scratch memory call merge_sort(array, work) else ! Allocate a buffer to use as scratch memory. allocate (buf(0:array_size/2 - 1), stat=stat) if (stat /= 0) error stop "int32_increase_ord_sort: Allocation of buffer failed." call merge_sort(array, buf) end if contains pure function calc_min_run(n) result(min_run) !! Returns the minimum length of a run from 32-63 so that N/MIN_RUN is !! less than or equal to a power of two. See !! https://svn.python.org/projects/python/trunk/Objects/listsort.txt integer(int_index) :: min_run integer(int_index), intent(in) :: n integer(int_index) :: num, r num = n r = 0_int_index do while (num >= 64) r = ior(r, iand(num, 1_int_index)) num = ishft(num, -1_int_index) end do min_run = num + r end function calc_min_run pure subroutine insertion_sort(array) ! Sorts `ARRAY` using an insertion sort. integer(int32), intent(inout) :: array(0:) integer(int_index) :: i, j integer(int32) :: key do j = 1, size(array, kind=int_index) - 1 key = array(j) i = j - 1 do while (i >= 0) if (array(i) <= key) exit array(i + 1) = array(i) i = i - 1 end do array(i + 1) = key end do end subroutine insertion_sort pure function collapse(runs) result(r) ! Examine the stack of runs waiting to be merged, identifying adjacent runs ! to be merged until the stack invariants are restablished: ! ! 1. len(-3) > len(-2) + len(-1) ! 2. len(-2) > len(-1) integer(int_index) :: r type(run_type), intent(in), target :: runs(0:) integer(int_index) :: n logical :: test n = size(runs, kind=int_index) test = .false. if (n >= 2) then if (runs(n - 1)%base == 0 .or. & runs(n - 2)%len <= runs(n - 1)%len) then test = .true. else if (n >= 3) then ! X exists if (runs(n - 3)%len <= & runs(n - 2)%len + runs(n - 1)%len) then test = .true. ! |X| <= |Y| + |Z| => will need to merge due to rho1 or rho2 else if (n >= 4) then if (runs(n - 4)%len <= & runs(n - 3)%len + runs(n - 2)%len) then test = .true. ! |W| <= |X| + |Y| => will need to merge due to rho1 or rho3 end if end if end if end if if (test) then ! By default merge Y & Z, rho2 or rho3 if (n >= 3) then if (runs(n - 3)%len < runs(n - 1)%len) then r = n - 3 ! |X| < |Z| => merge X & Y, rho1 return end if end if r = n - 2 ! |Y| <= |Z| => merge Y & Z, rho4 return else r = -1 end if end function collapse pure subroutine insert_head(array) ! Inserts `array(0)` into the pre-sorted sequence `array(1:)` so that the ! whole `array(0:)` becomes sorted, copying the first element into ! a temporary variable, iterating until the right place for it is found. ! copying every traversed element into the slot preceding it, and finally, ! copying data from the temporary variable into the resulting hole. integer(int32), intent(inout) :: array(0:) integer(int32) :: tmp integer(int_index) :: i tmp = array(0) find_hole: do i = 1, size(array, kind=int_index) - 1 if (array(i) >= tmp) exit find_hole array(i - 1) = array(i) end do find_hole array(i - 1) = tmp end subroutine insert_head subroutine merge_sort(array, buf) ! The Rust merge sort borrows some (but not all) of the ideas from TimSort, ! which is described in detail at ! (http://svn.python.org/projects/python/trunk/Objects/listsort.txt). ! ! The algorithm identifies strictly descending and non-descending ! subsequences, which are called natural runs. Where these runs are less ! than a minimum run size they are padded by adding additional samples ! using an insertion sort. The merge process is driven by a stack of ! pending unmerged runs. Each newly found run is pushed onto the stack, ! and then pairs of adjacentd runs are merged until these two invariants ! are satisfied: ! ! 1. for every `i` in `1..size(runs)-1`: `runs(i - 1)%len > runs(i)%len` ! 2. for every `i` in `2..size(runs)-1`: `runs(i - 2)%len > ! runs(i - 1)%len + runs(i)%len` ! ! The invariants ensure that the total running time is `O(n log n)` ! worst-case. integer(int32), intent(inout) :: array(0:) integer(int32), intent(inout) :: buf(0:) integer(int_index) :: array_size, finish, min_run, r, r_count, & start type(run_type) :: runs(0:max_merge_stack - 1), left, right array_size = size(array, kind=int_index) ! Very short runs are extended using insertion sort to span at least ! min_run elements. Slices of up to this length are sorted using insertion ! sort. min_run = calc_min_run(array_size) if (array_size <= min_run) then if (array_size >= 2) call insertion_sort(array) return end if ! Following Rust sort, natural runs in `array` are identified by traversing ! it backwards. By traversing it backward, merges more often go in the ! opposite direction (forwards). According to developers of Rust sort, ! merging forwards is slightly faster than merging backwards. Therefore ! identifying runs by traversing backwards should improve performance. r_count = 0 finish = array_size - 1 do while (finish >= 0) ! Find the next natural run, and reverse it if it's strictly descending. start = finish if (start > 0) then start = start - 1 if (array(start + 1) < array(start)) then Descending: do while (start > 0) if (array(start) >= array(start - 1)) & exit Descending start = start - 1 end do Descending call reverse_segment(array(start:finish)) else Ascending: do while (start > 0) if (array(start) < array(start - 1)) exit Ascending start = start - 1 end do Ascending end if end if ! If the run is too short insert some more elements using an insertion sort. Insert: do while (start > 0) if (finish - start >= min_run - 1) exit Insert start = start - 1 call insert_head(array(start:finish)) end do Insert if (start == 0 .and. finish == array_size - 1) return runs(r_count) = run_type(base=start, & len=finish - start + 1) finish = start - 1 r_count = r_count + 1 ! Determine whether pairs of adjacent runs need to be merged to satisfy ! the invariants, and, if so, merge them. Merge_loop: do r = collapse(runs(0:r_count - 1)) if (r < 0 .or. r_count <= 1) exit Merge_loop left = runs(r + 1) right = runs(r) call merge(array(left%base: & right%base + right%len - 1), & left%len, buf) runs(r) = run_type(base=left%base, & len=left%len + right%len) if (r == r_count - 3) runs(r + 1) = runs(r + 2) r_count = r_count - 1 end do Merge_loop end do if (r_count /= 1) & error stop "MERGE_SORT completed without RUN COUNT == 1." end subroutine merge_sort pure subroutine merge(array, mid, buf) ! Merges the two non-decreasing runs `ARRAY(0:MID-1)` and `ARRAY(MID:)` ! using `BUF` as temporary storage, and stores the merged runs into ! `ARRAY(0:)`. `MID` must be > 0, and < `SIZE(ARRAY)-1`. Buffer `BUF` ! must be long enough to hold the shorter of the two runs. integer(int32), intent(inout) :: array(0:) integer(int_index), intent(in) :: mid integer(int32), intent(inout) :: buf(0:) integer(int_index) :: array_len, i, j, k array_len = size(array, kind=int_index) ! Merge first copies the shorter run into `buf`. Then, depending on which ! run was shorter, it traces the copied run and the longer run forwards ! (or backwards), comparing their next unprocessed elements and then ! copying the lesser (or greater) one into `array`. if (mid <= array_len - mid) then ! The left run is shorter. buf(0:mid - 1) = array(0:mid - 1) i = 0 j = mid merge_lower: do k = 0, array_len - 1 if (buf(i) <= array(j)) then array(k) = buf(i) i = i + 1 if (i >= mid) exit merge_lower else array(k) = array(j) j = j + 1 if (j >= array_len) then array(k + 1:) = buf(i:mid - 1) exit merge_lower end if end if end do merge_lower else ! The right run is shorter ! check that it is stable buf(0:array_len - mid - 1) = array(mid:array_len - 1) i = mid - 1 j = array_len - mid - 1 merge_upper: do k = array_len - 1, 0, -1 if (buf(j) >= array(i)) then array(k) = buf(j) j = j - 1 if (j < 0) exit merge_upper else array(k) = array(i) i = i - 1 if (i < 0) then array(0:k - 1) = buf(0:j) exit merge_upper end if end if end do merge_upper end if end subroutine merge pure subroutine reverse_segment(array) ! Reverse a segment of an array in place integer(int32), intent(inout) :: array(0:) integer(int_index) :: lo, hi integer(int32) :: temp lo = 0 hi = size(array, kind=int_index) - 1 do while (lo < hi) temp = array(lo) array(lo) = array(hi) array(hi) = temp lo = lo + 1 hi = hi - 1 end do end subroutine reverse_segment end subroutine int32_increase_ord_sort subroutine int64_increase_ord_sort(array, work) ! A translation to Fortran 2008, of the `"Rust" sort` algorithm found in ! `slice.rs` ! https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs#L2159 ! The Rust version in turn is a simplification of the Timsort algorithm ! described in ! https://svn.python.org/projects/python/trunk/Objects/listsort.txt, as ! it drops both the use of 'galloping' to identify bounds of regions to be ! sorted and the estimation of the optimal `run size`. However it remains ! a hybrid sorting algorithm combining an iterative Merge sort controlled ! by a stack of `RUNS` identified by regions of uniformly decreasing or ! non-decreasing sequences that may be expanded to a minimum run size and ! initially processed by an insertion sort. ! ! Note the Fortran implementation simplifies the logic as it only has to ! deal with Fortran arrays of intrinsic types and not the full generality ! of Rust's arrays and lists for arbitrary types. It also adds the ! estimation of the optimal `run size` as suggested in Tim Peters' ! original `listsort.txt`, and an optional `work` array to be used as ! scratch memory. integer(int64), intent(inout) :: array(0:) integer(int64), intent(out), optional :: work(0:) integer(int64), allocatable :: buf(:) integer(int_index) :: array_size integer :: stat array_size = size(array, kind=int_index) if (present(work)) then if (size(work, kind=int_index) < array_size/2) then error stop "int64_increase_ord_sort: work array is too small." end if ! Use the work array as scratch memory call merge_sort(array, work) else ! Allocate a buffer to use as scratch memory. allocate (buf(0:array_size/2 - 1), stat=stat) if (stat /= 0) error stop "int64_increase_ord_sort: Allocation of buffer failed." call merge_sort(array, buf) end if contains pure function calc_min_run(n) result(min_run) !! Returns the minimum length of a run from 32-63 so that N/MIN_RUN is !! less than or equal to a power of two. See !! https://svn.python.org/projects/python/trunk/Objects/listsort.txt integer(int_index) :: min_run integer(int_index), intent(in) :: n integer(int_index) :: num, r num = n r = 0_int_index do while (num >= 64) r = ior(r, iand(num, 1_int_index)) num = ishft(num, -1_int_index) end do min_run = num + r end function calc_min_run pure subroutine insertion_sort(array) ! Sorts `ARRAY` using an insertion sort. integer(int64), intent(inout) :: array(0:) integer(int_index) :: i, j integer(int64) :: key do j = 1, size(array, kind=int_index) - 1 key = array(j) i = j - 1 do while (i >= 0) if (array(i) <= key) exit array(i + 1) = array(i) i = i - 1 end do array(i + 1) = key end do end subroutine insertion_sort pure function collapse(runs) result(r) ! Examine the stack of runs waiting to be merged, identifying adjacent runs ! to be merged until the stack invariants are restablished: ! ! 1. len(-3) > len(-2) + len(-1) ! 2. len(-2) > len(-1) integer(int_index) :: r type(run_type), intent(in), target :: runs(0:) integer(int_index) :: n logical :: test n = size(runs, kind=int_index) test = .false. if (n >= 2) then if (runs(n - 1)%base == 0 .or. & runs(n - 2)%len <= runs(n - 1)%len) then test = .true. else if (n >= 3) then ! X exists if (runs(n - 3)%len <= & runs(n - 2)%len + runs(n - 1)%len) then test = .true. ! |X| <= |Y| + |Z| => will need to merge due to rho1 or rho2 else if (n >= 4) then if (runs(n - 4)%len <= & runs(n - 3)%len + runs(n - 2)%len) then test = .true. ! |W| <= |X| + |Y| => will need to merge due to rho1 or rho3 end if end if end if end if if (test) then ! By default merge Y & Z, rho2 or rho3 if (n >= 3) then if (runs(n - 3)%len < runs(n - 1)%len) then r = n - 3 ! |X| < |Z| => merge X & Y, rho1 return end if end if r = n - 2 ! |Y| <= |Z| => merge Y & Z, rho4 return else r = -1 end if end function collapse pure subroutine insert_head(array) ! Inserts `array(0)` into the pre-sorted sequence `array(1:)` so that the ! whole `array(0:)` becomes sorted, copying the first element into ! a temporary variable, iterating until the right place for it is found. ! copying every traversed element into the slot preceding it, and finally, ! copying data from the temporary variable into the resulting hole. integer(int64), intent(inout) :: array(0:) integer(int64) :: tmp integer(int_index) :: i tmp = array(0) find_hole: do i = 1, size(array, kind=int_index) - 1 if (array(i) >= tmp) exit find_hole array(i - 1) = array(i) end do find_hole array(i - 1) = tmp end subroutine insert_head subroutine merge_sort(array, buf) ! The Rust merge sort borrows some (but not all) of the ideas from TimSort, ! which is described in detail at ! (http://svn.python.org/projects/python/trunk/Objects/listsort.txt). ! ! The algorithm identifies strictly descending and non-descending ! subsequences, which are called natural runs. Where these runs are less ! than a minimum run size they are padded by adding additional samples ! using an insertion sort. The merge process is driven by a stack of ! pending unmerged runs. Each newly found run is pushed onto the stack, ! and then pairs of adjacentd runs are merged until these two invariants ! are satisfied: ! ! 1. for every `i` in `1..size(runs)-1`: `runs(i - 1)%len > runs(i)%len` ! 2. for every `i` in `2..size(runs)-1`: `runs(i - 2)%len > ! runs(i - 1)%len + runs(i)%len` ! ! The invariants ensure that the total running time is `O(n log n)` ! worst-case. integer(int64), intent(inout) :: array(0:) integer(int64), intent(inout) :: buf(0:) integer(int_index) :: array_size, finish, min_run, r, r_count, & start type(run_type) :: runs(0:max_merge_stack - 1), left, right array_size = size(array, kind=int_index) ! Very short runs are extended using insertion sort to span at least ! min_run elements. Slices of up to this length are sorted using insertion ! sort. min_run = calc_min_run(array_size) if (array_size <= min_run) then if (array_size >= 2) call insertion_sort(array) return end if ! Following Rust sort, natural runs in `array` are identified by traversing ! it backwards. By traversing it backward, merges more often go in the ! opposite direction (forwards). According to developers of Rust sort, ! merging forwards is slightly faster than merging backwards. Therefore ! identifying runs by traversing backwards should improve performance. r_count = 0 finish = array_size - 1 do while (finish >= 0) ! Find the next natural run, and reverse it if it's strictly descending. start = finish if (start > 0) then start = start - 1 if (array(start + 1) < array(start)) then Descending: do while (start > 0) if (array(start) >= array(start - 1)) & exit Descending start = start - 1 end do Descending call reverse_segment(array(start:finish)) else Ascending: do while (start > 0) if (array(start) < array(start - 1)) exit Ascending start = start - 1 end do Ascending end if end if ! If the run is too short insert some more elements using an insertion sort. Insert: do while (start > 0) if (finish - start >= min_run - 1) exit Insert start = start - 1 call insert_head(array(start:finish)) end do Insert if (start == 0 .and. finish == array_size - 1) return runs(r_count) = run_type(base=start, & len=finish - start + 1) finish = start - 1 r_count = r_count + 1 ! Determine whether pairs of adjacent runs need to be merged to satisfy ! the invariants, and, if so, merge them. Merge_loop: do r = collapse(runs(0:r_count - 1)) if (r < 0 .or. r_count <= 1) exit Merge_loop left = runs(r + 1) right = runs(r) call merge(array(left%base: & right%base + right%len - 1), & left%len, buf) runs(r) = run_type(base=left%base, & len=left%len + right%len) if (r == r_count - 3) runs(r + 1) = runs(r + 2) r_count = r_count - 1 end do Merge_loop end do if (r_count /= 1) & error stop "MERGE_SORT completed without RUN COUNT == 1." end subroutine merge_sort pure subroutine merge(array, mid, buf) ! Merges the two non-decreasing runs `ARRAY(0:MID-1)` and `ARRAY(MID:)` ! using `BUF` as temporary storage, and stores the merged runs into ! `ARRAY(0:)`. `MID` must be > 0, and < `SIZE(ARRAY)-1`. Buffer `BUF` ! must be long enough to hold the shorter of the two runs. integer(int64), intent(inout) :: array(0:) integer(int_index), intent(in) :: mid integer(int64), intent(inout) :: buf(0:) integer(int_index) :: array_len, i, j, k array_len = size(array, kind=int_index) ! Merge first copies the shorter run into `buf`. Then, depending on which ! run was shorter, it traces the copied run and the longer run forwards ! (or backwards), comparing their next unprocessed elements and then ! copying the lesser (or greater) one into `array`. if (mid <= array_len - mid) then ! The left run is shorter. buf(0:mid - 1) = array(0:mid - 1) i = 0 j = mid merge_lower: do k = 0, array_len - 1 if (buf(i) <= array(j)) then array(k) = buf(i) i = i + 1 if (i >= mid) exit merge_lower else array(k) = array(j) j = j + 1 if (j >= array_len) then array(k + 1:) = buf(i:mid - 1) exit merge_lower end if end if end do merge_lower else ! The right run is shorter ! check that it is stable buf(0:array_len - mid - 1) = array(mid:array_len - 1) i = mid - 1 j = array_len - mid - 1 merge_upper: do k = array_len - 1, 0, -1 if (buf(j) >= array(i)) then array(k) = buf(j) j = j - 1 if (j < 0) exit merge_upper else array(k) = array(i) i = i - 1 if (i < 0) then array(0:k - 1) = buf(0:j) exit merge_upper end if end if end do merge_upper end if end subroutine merge pure subroutine reverse_segment(array) ! Reverse a segment of an array in place integer(int64), intent(inout) :: array(0:) integer(int_index) :: lo, hi integer(int64) :: temp lo = 0 hi = size(array, kind=int_index) - 1 do while (lo < hi) temp = array(lo) array(lo) = array(hi) array(hi) = temp lo = lo + 1 hi = hi - 1 end do end subroutine reverse_segment end subroutine int64_increase_ord_sort subroutine sp_increase_ord_sort(array, work) ! A translation to Fortran 2008, of the `"Rust" sort` algorithm found in ! `slice.rs` ! https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs#L2159 ! The Rust version in turn is a simplification of the Timsort algorithm ! described in ! https://svn.python.org/projects/python/trunk/Objects/listsort.txt, as ! it drops both the use of 'galloping' to identify bounds of regions to be ! sorted and the estimation of the optimal `run size`. However it remains ! a hybrid sorting algorithm combining an iterative Merge sort controlled ! by a stack of `RUNS` identified by regions of uniformly decreasing or ! non-decreasing sequences that may be expanded to a minimum run size and ! initially processed by an insertion sort. ! ! Note the Fortran implementation simplifies the logic as it only has to ! deal with Fortran arrays of intrinsic types and not the full generality ! of Rust's arrays and lists for arbitrary types. It also adds the ! estimation of the optimal `run size` as suggested in Tim Peters' ! original `listsort.txt`, and an optional `work` array to be used as ! scratch memory. real(sp), intent(inout) :: array(0:) real(sp), intent(out), optional :: work(0:) real(sp), allocatable :: buf(:) integer(int_index) :: array_size integer :: stat array_size = size(array, kind=int_index) if (present(work)) then if (size(work, kind=int_index) < array_size/2) then error stop "sp_increase_ord_sort: work array is too small." end if ! Use the work array as scratch memory call merge_sort(array, work) else ! Allocate a buffer to use as scratch memory. allocate (buf(0:array_size/2 - 1), stat=stat) if (stat /= 0) error stop "sp_increase_ord_sort: Allocation of buffer failed." call merge_sort(array, buf) end if contains pure function calc_min_run(n) result(min_run) !! Returns the minimum length of a run from 32-63 so that N/MIN_RUN is !! less than or equal to a power of two. See !! https://svn.python.org/projects/python/trunk/Objects/listsort.txt integer(int_index) :: min_run integer(int_index), intent(in) :: n integer(int_index) :: num, r num = n r = 0_int_index do while (num >= 64) r = ior(r, iand(num, 1_int_index)) num = ishft(num, -1_int_index) end do min_run = num + r end function calc_min_run pure subroutine insertion_sort(array) ! Sorts `ARRAY` using an insertion sort. real(sp), intent(inout) :: array(0:) integer(int_index) :: i, j real(sp) :: key do j = 1, size(array, kind=int_index) - 1 key = array(j) i = j - 1 do while (i >= 0) if (array(i) <= key) exit array(i + 1) = array(i) i = i - 1 end do array(i + 1) = key end do end subroutine insertion_sort pure function collapse(runs) result(r) ! Examine the stack of runs waiting to be merged, identifying adjacent runs ! to be merged until the stack invariants are restablished: ! ! 1. len(-3) > len(-2) + len(-1) ! 2. len(-2) > len(-1) integer(int_index) :: r type(run_type), intent(in), target :: runs(0:) integer(int_index) :: n logical :: test n = size(runs, kind=int_index) test = .false. if (n >= 2) then if (runs(n - 1)%base == 0 .or. & runs(n - 2)%len <= runs(n - 1)%len) then test = .true. else if (n >= 3) then ! X exists if (runs(n - 3)%len <= & runs(n - 2)%len + runs(n - 1)%len) then test = .true. ! |X| <= |Y| + |Z| => will need to merge due to rho1 or rho2 else if (n >= 4) then if (runs(n - 4)%len <= & runs(n - 3)%len + runs(n - 2)%len) then test = .true. ! |W| <= |X| + |Y| => will need to merge due to rho1 or rho3 end if end if end if end if if (test) then ! By default merge Y & Z, rho2 or rho3 if (n >= 3) then if (runs(n - 3)%len < runs(n - 1)%len) then r = n - 3 ! |X| < |Z| => merge X & Y, rho1 return end if end if r = n - 2 ! |Y| <= |Z| => merge Y & Z, rho4 return else r = -1 end if end function collapse pure subroutine insert_head(array) ! Inserts `array(0)` into the pre-sorted sequence `array(1:)` so that the ! whole `array(0:)` becomes sorted, copying the first element into ! a temporary variable, iterating until the right place for it is found. ! copying every traversed element into the slot preceding it, and finally, ! copying data from the temporary variable into the resulting hole. real(sp), intent(inout) :: array(0:) real(sp) :: tmp integer(int_index) :: i tmp = array(0) find_hole: do i = 1, size(array, kind=int_index) - 1 if (array(i) >= tmp) exit find_hole array(i - 1) = array(i) end do find_hole array(i - 1) = tmp end subroutine insert_head subroutine merge_sort(array, buf) ! The Rust merge sort borrows some (but not all) of the ideas from TimSort, ! which is described in detail at ! (http://svn.python.org/projects/python/trunk/Objects/listsort.txt). ! ! The algorithm identifies strictly descending and non-descending ! subsequences, which are called natural runs. Where these runs are less ! than a minimum run size they are padded by adding additional samples ! using an insertion sort. The merge process is driven by a stack of ! pending unmerged runs. Each newly found run is pushed onto the stack, ! and then pairs of adjacentd runs are merged until these two invariants ! are satisfied: ! ! 1. for every `i` in `1..size(runs)-1`: `runs(i - 1)%len > runs(i)%len` ! 2. for every `i` in `2..size(runs)-1`: `runs(i - 2)%len > ! runs(i - 1)%len + runs(i)%len` ! ! The invariants ensure that the total running time is `O(n log n)` ! worst-case. real(sp), intent(inout) :: array(0:) real(sp), intent(inout) :: buf(0:) integer(int_index) :: array_size, finish, min_run, r, r_count, & start type(run_type) :: runs(0:max_merge_stack - 1), left, right array_size = size(array, kind=int_index) ! Very short runs are extended using insertion sort to span at least ! min_run elements. Slices of up to this length are sorted using insertion ! sort. min_run = calc_min_run(array_size) if (array_size <= min_run) then if (array_size >= 2) call insertion_sort(array) return end if ! Following Rust sort, natural runs in `array` are identified by traversing ! it backwards. By traversing it backward, merges more often go in the ! opposite direction (forwards). According to developers of Rust sort, ! merging forwards is slightly faster than merging backwards. Therefore ! identifying runs by traversing backwards should improve performance. r_count = 0 finish = array_size - 1 do while (finish >= 0) ! Find the next natural run, and reverse it if it's strictly descending. start = finish if (start > 0) then start = start - 1 if (array(start + 1) < array(start)) then Descending: do while (start > 0) if (array(start) >= array(start - 1)) & exit Descending start = start - 1 end do Descending call reverse_segment(array(start:finish)) else Ascending: do while (start > 0) if (array(start) < array(start - 1)) exit Ascending start = start - 1 end do Ascending end if end if ! If the run is too short insert some more elements using an insertion sort. Insert: do while (start > 0) if (finish - start >= min_run - 1) exit Insert start = start - 1 call insert_head(array(start:finish)) end do Insert if (start == 0 .and. finish == array_size - 1) return runs(r_count) = run_type(base=start, & len=finish - start + 1) finish = start - 1 r_count = r_count + 1 ! Determine whether pairs of adjacent runs need to be merged to satisfy ! the invariants, and, if so, merge them. Merge_loop: do r = collapse(runs(0:r_count - 1)) if (r < 0 .or. r_count <= 1) exit Merge_loop left = runs(r + 1) right = runs(r) call merge(array(left%base: & right%base + right%len - 1), & left%len, buf) runs(r) = run_type(base=left%base, & len=left%len + right%len) if (r == r_count - 3) runs(r + 1) = runs(r + 2) r_count = r_count - 1 end do Merge_loop end do if (r_count /= 1) & error stop "MERGE_SORT completed without RUN COUNT == 1." end subroutine merge_sort pure subroutine merge(array, mid, buf) ! Merges the two non-decreasing runs `ARRAY(0:MID-1)` and `ARRAY(MID:)` ! using `BUF` as temporary storage, and stores the merged runs into ! `ARRAY(0:)`. `MID` must be > 0, and < `SIZE(ARRAY)-1`. Buffer `BUF` ! must be long enough to hold the shorter of the two runs. real(sp), intent(inout) :: array(0:) integer(int_index), intent(in) :: mid real(sp), intent(inout) :: buf(0:) integer(int_index) :: array_len, i, j, k array_len = size(array, kind=int_index) ! Merge first copies the shorter run into `buf`. Then, depending on which ! run was shorter, it traces the copied run and the longer run forwards ! (or backwards), comparing their next unprocessed elements and then ! copying the lesser (or greater) one into `array`. if (mid <= array_len - mid) then ! The left run is shorter. buf(0:mid - 1) = array(0:mid - 1) i = 0 j = mid merge_lower: do k = 0, array_len - 1 if (buf(i) <= array(j)) then array(k) = buf(i) i = i + 1 if (i >= mid) exit merge_lower else array(k) = array(j) j = j + 1 if (j >= array_len) then array(k + 1:) = buf(i:mid - 1) exit merge_lower end if end if end do merge_lower else ! The right run is shorter ! check that it is stable buf(0:array_len - mid - 1) = array(mid:array_len - 1) i = mid - 1 j = array_len - mid - 1 merge_upper: do k = array_len - 1, 0, -1 if (buf(j) >= array(i)) then array(k) = buf(j) j = j - 1 if (j < 0) exit merge_upper else array(k) = array(i) i = i - 1 if (i < 0) then array(0:k - 1) = buf(0:j) exit merge_upper end if end if end do merge_upper end if end subroutine merge pure subroutine reverse_segment(array) ! Reverse a segment of an array in place real(sp), intent(inout) :: array(0:) integer(int_index) :: lo, hi real(sp) :: temp lo = 0 hi = size(array, kind=int_index) - 1 do while (lo < hi) temp = array(lo) array(lo) = array(hi) array(hi) = temp lo = lo + 1 hi = hi - 1 end do end subroutine reverse_segment end subroutine sp_increase_ord_sort subroutine dp_increase_ord_sort(array, work) ! A translation to Fortran 2008, of the `"Rust" sort` algorithm found in ! `slice.rs` ! https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs#L2159 ! The Rust version in turn is a simplification of the Timsort algorithm ! described in ! https://svn.python.org/projects/python/trunk/Objects/listsort.txt, as ! it drops both the use of 'galloping' to identify bounds of regions to be ! sorted and the estimation of the optimal `run size`. However it remains ! a hybrid sorting algorithm combining an iterative Merge sort controlled ! by a stack of `RUNS` identified by regions of uniformly decreasing or ! non-decreasing sequences that may be expanded to a minimum run size and ! initially processed by an insertion sort. ! ! Note the Fortran implementation simplifies the logic as it only has to ! deal with Fortran arrays of intrinsic types and not the full generality ! of Rust's arrays and lists for arbitrary types. It also adds the ! estimation of the optimal `run size` as suggested in Tim Peters' ! original `listsort.txt`, and an optional `work` array to be used as ! scratch memory. real(dp), intent(inout) :: array(0:) real(dp), intent(out), optional :: work(0:) real(dp), allocatable :: buf(:) integer(int_index) :: array_size integer :: stat array_size = size(array, kind=int_index) if (present(work)) then if (size(work, kind=int_index) < array_size/2) then error stop "dp_increase_ord_sort: work array is too small." end if ! Use the work array as scratch memory call merge_sort(array, work) else ! Allocate a buffer to use as scratch memory. allocate (buf(0:array_size/2 - 1), stat=stat) if (stat /= 0) error stop "dp_increase_ord_sort: Allocation of buffer failed." call merge_sort(array, buf) end if contains pure function calc_min_run(n) result(min_run) !! Returns the minimum length of a run from 32-63 so that N/MIN_RUN is !! less than or equal to a power of two. See !! https://svn.python.org/projects/python/trunk/Objects/listsort.txt integer(int_index) :: min_run integer(int_index), intent(in) :: n integer(int_index) :: num, r num = n r = 0_int_index do while (num >= 64) r = ior(r, iand(num, 1_int_index)) num = ishft(num, -1_int_index) end do min_run = num + r end function calc_min_run pure subroutine insertion_sort(array) ! Sorts `ARRAY` using an insertion sort. real(dp), intent(inout) :: array(0:) integer(int_index) :: i, j real(dp) :: key do j = 1, size(array, kind=int_index) - 1 key = array(j) i = j - 1 do while (i >= 0) if (array(i) <= key) exit array(i + 1) = array(i) i = i - 1 end do array(i + 1) = key end do end subroutine insertion_sort pure function collapse(runs) result(r) ! Examine the stack of runs waiting to be merged, identifying adjacent runs ! to be merged until the stack invariants are restablished: ! ! 1. len(-3) > len(-2) + len(-1) ! 2. len(-2) > len(-1) integer(int_index) :: r type(run_type), intent(in), target :: runs(0:) integer(int_index) :: n logical :: test n = size(runs, kind=int_index) test = .false. if (n >= 2) then if (runs(n - 1)%base == 0 .or. & runs(n - 2)%len <= runs(n - 1)%len) then test = .true. else if (n >= 3) then ! X exists if (runs(n - 3)%len <= & runs(n - 2)%len + runs(n - 1)%len) then test = .true. ! |X| <= |Y| + |Z| => will need to merge due to rho1 or rho2 else if (n >= 4) then if (runs(n - 4)%len <= & runs(n - 3)%len + runs(n - 2)%len) then test = .true. ! |W| <= |X| + |Y| => will need to merge due to rho1 or rho3 end if end if end if end if if (test) then ! By default merge Y & Z, rho2 or rho3 if (n >= 3) then if (runs(n - 3)%len < runs(n - 1)%len) then r = n - 3 ! |X| < |Z| => merge X & Y, rho1 return end if end if r = n - 2 ! |Y| <= |Z| => merge Y & Z, rho4 return else r = -1 end if end function collapse pure subroutine insert_head(array) ! Inserts `array(0)` into the pre-sorted sequence `array(1:)` so that the ! whole `array(0:)` becomes sorted, copying the first element into ! a temporary variable, iterating until the right place for it is found. ! copying every traversed element into the slot preceding it, and finally, ! copying data from the temporary variable into the resulting hole. real(dp), intent(inout) :: array(0:) real(dp) :: tmp integer(int_index) :: i tmp = array(0) find_hole: do i = 1, size(array, kind=int_index) - 1 if (array(i) >= tmp) exit find_hole array(i - 1) = array(i) end do find_hole array(i - 1) = tmp end subroutine insert_head subroutine merge_sort(array, buf) ! The Rust merge sort borrows some (but not all) of the ideas from TimSort, ! which is described in detail at ! (http://svn.python.org/projects/python/trunk/Objects/listsort.txt). ! ! The algorithm identifies strictly descending and non-descending ! subsequences, which are called natural runs. Where these runs are less ! than a minimum run size they are padded by adding additional samples ! using an insertion sort. The merge process is driven by a stack of ! pending unmerged runs. Each newly found run is pushed onto the stack, ! and then pairs of adjacentd runs are merged until these two invariants ! are satisfied: ! ! 1. for every `i` in `1..size(runs)-1`: `runs(i - 1)%len > runs(i)%len` ! 2. for every `i` in `2..size(runs)-1`: `runs(i - 2)%len > ! runs(i - 1)%len + runs(i)%len` ! ! The invariants ensure that the total running time is `O(n log n)` ! worst-case. real(dp), intent(inout) :: array(0:) real(dp), intent(inout) :: buf(0:) integer(int_index) :: array_size, finish, min_run, r, r_count, & start type(run_type) :: runs(0:max_merge_stack - 1), left, right array_size = size(array, kind=int_index) ! Very short runs are extended using insertion sort to span at least ! min_run elements. Slices of up to this length are sorted using insertion ! sort. min_run = calc_min_run(array_size) if (array_size <= min_run) then if (array_size >= 2) call insertion_sort(array) return end if ! Following Rust sort, natural runs in `array` are identified by traversing ! it backwards. By traversing it backward, merges more often go in the ! opposite direction (forwards). According to developers of Rust sort, ! merging forwards is slightly faster than merging backwards. Therefore ! identifying runs by traversing backwards should improve performance. r_count = 0 finish = array_size - 1 do while (finish >= 0) ! Find the next natural run, and reverse it if it's strictly descending. start = finish if (start > 0) then start = start - 1 if (array(start + 1) < array(start)) then Descending: do while (start > 0) if (array(start) >= array(start - 1)) & exit Descending start = start - 1 end do Descending call reverse_segment(array(start:finish)) else Ascending: do while (start > 0) if (array(start) < array(start - 1)) exit Ascending start = start - 1 end do Ascending end if end if ! If the run is too short insert some more elements using an insertion sort. Insert: do while (start > 0) if (finish - start >= min_run - 1) exit Insert start = start - 1 call insert_head(array(start:finish)) end do Insert if (start == 0 .and. finish == array_size - 1) return runs(r_count) = run_type(base=start, & len=finish - start + 1) finish = start - 1 r_count = r_count + 1 ! Determine whether pairs of adjacent runs need to be merged to satisfy ! the invariants, and, if so, merge them. Merge_loop: do r = collapse(runs(0:r_count - 1)) if (r < 0 .or. r_count <= 1) exit Merge_loop left = runs(r + 1) right = runs(r) call merge(array(left%base: & right%base + right%len - 1), & left%len, buf) runs(r) = run_type(base=left%base, & len=left%len + right%len) if (r == r_count - 3) runs(r + 1) = runs(r + 2) r_count = r_count - 1 end do Merge_loop end do if (r_count /= 1) & error stop "MERGE_SORT completed without RUN COUNT == 1." end subroutine merge_sort pure subroutine merge(array, mid, buf) ! Merges the two non-decreasing runs `ARRAY(0:MID-1)` and `ARRAY(MID:)` ! using `BUF` as temporary storage, and stores the merged runs into ! `ARRAY(0:)`. `MID` must be > 0, and < `SIZE(ARRAY)-1`. Buffer `BUF` ! must be long enough to hold the shorter of the two runs. real(dp), intent(inout) :: array(0:) integer(int_index), intent(in) :: mid real(dp), intent(inout) :: buf(0:) integer(int_index) :: array_len, i, j, k array_len = size(array, kind=int_index) ! Merge first copies the shorter run into `buf`. Then, depending on which ! run was shorter, it traces the copied run and the longer run forwards ! (or backwards), comparing their next unprocessed elements and then ! copying the lesser (or greater) one into `array`. if (mid <= array_len - mid) then ! The left run is shorter. buf(0:mid - 1) = array(0:mid - 1) i = 0 j = mid merge_lower: do k = 0, array_len - 1 if (buf(i) <= array(j)) then array(k) = buf(i) i = i + 1 if (i >= mid) exit merge_lower else array(k) = array(j) j = j + 1 if (j >= array_len) then array(k + 1:) = buf(i:mid - 1) exit merge_lower end if end if end do merge_lower else ! The right run is shorter ! check that it is stable buf(0:array_len - mid - 1) = array(mid:array_len - 1) i = mid - 1 j = array_len - mid - 1 merge_upper: do k = array_len - 1, 0, -1 if (buf(j) >= array(i)) then array(k) = buf(j) j = j - 1 if (j < 0) exit merge_upper else array(k) = array(i) i = i - 1 if (i < 0) then array(0:k - 1) = buf(0:j) exit merge_upper end if end if end do merge_upper end if end subroutine merge pure subroutine reverse_segment(array) ! Reverse a segment of an array in place real(dp), intent(inout) :: array(0:) integer(int_index) :: lo, hi real(dp) :: temp lo = 0 hi = size(array, kind=int_index) - 1 do while (lo < hi) temp = array(lo) array(lo) = array(hi) array(hi) = temp lo = lo + 1 hi = hi - 1 end do end subroutine reverse_segment end subroutine dp_increase_ord_sort subroutine char_increase_ord_sort(array, work) ! A translation to Fortran 2008, of the `"Rust" sort` algorithm found in ! `slice.rs` ! https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs#L2159 ! The Rust version in turn is a simplification of the Timsort algorithm ! described in ! https://svn.python.org/projects/python/trunk/Objects/listsort.txt, as ! it drops both the use of 'galloping' to identify bounds of regions to be ! sorted and the estimation of the optimal `run size`. However it remains ! a hybrid sorting algorithm combining an iterative Merge sort controlled ! by a stack of `RUNS` identified by regions of uniformly decreasing or ! non-decreasing sequences that may be expanded to a minimum run size and ! initially processed by an insertion sort. ! ! Note the Fortran implementation simplifies the logic as it only has to ! deal with Fortran arrays of intrinsic types and not the full generality ! of Rust's arrays and lists for arbitrary types. It also adds the ! estimation of the optimal `run size` as suggested in Tim Peters' ! original `listsort.txt`, and an optional `work` array to be used as ! scratch memory. character(len=*), intent(inout) :: array(0:) character(len=len(array)), intent(out), optional :: work(0:) character(len=:), allocatable :: buf(:) integer(int_index) :: array_size integer :: stat array_size = size(array, kind=int_index) if (present(work)) then if (size(work, kind=int_index) < array_size/2) then error stop "char_increase_ord_sort: work array is too small." end if ! Use the work array as scratch memory call merge_sort(array, work) else ! Allocate a buffer to use as scratch memory. allocate (character(len=len(array)) :: buf(0:array_size/2 - 1), & stat=stat) if (stat /= 0) error stop "char_increase_ord_sort: Allocation of buffer failed." call merge_sort(array, buf) end if contains pure function calc_min_run(n) result(min_run) !! Returns the minimum length of a run from 32-63 so that N/MIN_RUN is !! less than or equal to a power of two. See !! https://svn.python.org/projects/python/trunk/Objects/listsort.txt integer(int_index) :: min_run integer(int_index), intent(in) :: n integer(int_index) :: num, r num = n r = 0_int_index do while (num >= 64) r = ior(r, iand(num, 1_int_index)) num = ishft(num, -1_int_index) end do min_run = num + r end function calc_min_run pure subroutine insertion_sort(array) ! Sorts `ARRAY` using an insertion sort. character(len=*), intent(inout) :: array(0:) integer(int_index) :: i, j character(len=len(array)) :: key do j = 1, size(array, kind=int_index) - 1 key = array(j) i = j - 1 do while (i >= 0) if (array(i) <= key) exit array(i + 1) = array(i) i = i - 1 end do array(i + 1) = key end do end subroutine insertion_sort pure function collapse(runs) result(r) ! Examine the stack of runs waiting to be merged, identifying adjacent runs ! to be merged until the stack invariants are restablished: ! ! 1. len(-3) > len(-2) + len(-1) ! 2. len(-2) > len(-1) integer(int_index) :: r type(run_type), intent(in), target :: runs(0:) integer(int_index) :: n logical :: test n = size(runs, kind=int_index) test = .false. if (n >= 2) then if (runs(n - 1)%base == 0 .or. & runs(n - 2)%len <= runs(n - 1)%len) then test = .true. else if (n >= 3) then ! X exists if (runs(n - 3)%len <= & runs(n - 2)%len + runs(n - 1)%len) then test = .true. ! |X| <= |Y| + |Z| => will need to merge due to rho1 or rho2 else if (n >= 4) then if (runs(n - 4)%len <= & runs(n - 3)%len + runs(n - 2)%len) then test = .true. ! |W| <= |X| + |Y| => will need to merge due to rho1 or rho3 end if end if end if end if if (test) then ! By default merge Y & Z, rho2 or rho3 if (n >= 3) then if (runs(n - 3)%len < runs(n - 1)%len) then r = n - 3 ! |X| < |Z| => merge X & Y, rho1 return end if end if r = n - 2 ! |Y| <= |Z| => merge Y & Z, rho4 return else r = -1 end if end function collapse pure subroutine insert_head(array) ! Inserts `array(0)` into the pre-sorted sequence `array(1:)` so that the ! whole `array(0:)` becomes sorted, copying the first element into ! a temporary variable, iterating until the right place for it is found. ! copying every traversed element into the slot preceding it, and finally, ! copying data from the temporary variable into the resulting hole. character(len=*), intent(inout) :: array(0:) character(len=len(array)) :: tmp integer(int_index) :: i tmp = array(0) find_hole: do i = 1, size(array, kind=int_index) - 1 if (array(i) >= tmp) exit find_hole array(i - 1) = array(i) end do find_hole array(i - 1) = tmp end subroutine insert_head subroutine merge_sort(array, buf) ! The Rust merge sort borrows some (but not all) of the ideas from TimSort, ! which is described in detail at ! (http://svn.python.org/projects/python/trunk/Objects/listsort.txt). ! ! The algorithm identifies strictly descending and non-descending ! subsequences, which are called natural runs. Where these runs are less ! than a minimum run size they are padded by adding additional samples ! using an insertion sort. The merge process is driven by a stack of ! pending unmerged runs. Each newly found run is pushed onto the stack, ! and then pairs of adjacentd runs are merged until these two invariants ! are satisfied: ! ! 1. for every `i` in `1..size(runs)-1`: `runs(i - 1)%len > runs(i)%len` ! 2. for every `i` in `2..size(runs)-1`: `runs(i - 2)%len > ! runs(i - 1)%len + runs(i)%len` ! ! The invariants ensure that the total running time is `O(n log n)` ! worst-case. character(len=*), intent(inout) :: array(0:) character(len=len(array)), intent(inout) :: buf(0:) integer(int_index) :: array_size, finish, min_run, r, r_count, & start type(run_type) :: runs(0:max_merge_stack - 1), left, right array_size = size(array, kind=int_index) ! Very short runs are extended using insertion sort to span at least ! min_run elements. Slices of up to this length are sorted using insertion ! sort. min_run = calc_min_run(array_size) if (array_size <= min_run) then if (array_size >= 2) call insertion_sort(array) return end if ! Following Rust sort, natural runs in `array` are identified by traversing ! it backwards. By traversing it backward, merges more often go in the ! opposite direction (forwards). According to developers of Rust sort, ! merging forwards is slightly faster than merging backwards. Therefore ! identifying runs by traversing backwards should improve performance. r_count = 0 finish = array_size - 1 do while (finish >= 0) ! Find the next natural run, and reverse it if it's strictly descending. start = finish if (start > 0) then start = start - 1 if (array(start + 1) < array(start)) then Descending: do while (start > 0) if (array(start) >= array(start - 1)) & exit Descending start = start - 1 end do Descending call reverse_segment(array(start:finish)) else Ascending: do while (start > 0) if (array(start) < array(start - 1)) exit Ascending start = start - 1 end do Ascending end if end if ! If the run is too short insert some more elements using an insertion sort. Insert: do while (start > 0) if (finish - start >= min_run - 1) exit Insert start = start - 1 call insert_head(array(start:finish)) end do Insert if (start == 0 .and. finish == array_size - 1) return runs(r_count) = run_type(base=start, & len=finish - start + 1) finish = start - 1 r_count = r_count + 1 ! Determine whether pairs of adjacent runs need to be merged to satisfy ! the invariants, and, if so, merge them. Merge_loop: do r = collapse(runs(0:r_count - 1)) if (r < 0 .or. r_count <= 1) exit Merge_loop left = runs(r + 1) right = runs(r) call merge(array(left%base: & right%base + right%len - 1), & left%len, buf) runs(r) = run_type(base=left%base, & len=left%len + right%len) if (r == r_count - 3) runs(r + 1) = runs(r + 2) r_count = r_count - 1 end do Merge_loop end do if (r_count /= 1) & error stop "MERGE_SORT completed without RUN COUNT == 1." end subroutine merge_sort pure subroutine merge(array, mid, buf) ! Merges the two non-decreasing runs `ARRAY(0:MID-1)` and `ARRAY(MID:)` ! using `BUF` as temporary storage, and stores the merged runs into ! `ARRAY(0:)`. `MID` must be > 0, and < `SIZE(ARRAY)-1`. Buffer `BUF` ! must be long enough to hold the shorter of the two runs. character(len=*), intent(inout) :: array(0:) integer(int_index), intent(in) :: mid character(len=len(array)), intent(inout) :: buf(0:) integer(int_index) :: array_len, i, j, k array_len = size(array, kind=int_index) ! Merge first copies the shorter run into `buf`. Then, depending on which ! run was shorter, it traces the copied run and the longer run forwards ! (or backwards), comparing their next unprocessed elements and then ! copying the lesser (or greater) one into `array`. if (mid <= array_len - mid) then ! The left run is shorter. buf(0:mid - 1) = array(0:mid - 1) i = 0 j = mid merge_lower: do k = 0, array_len - 1 if (buf(i) <= array(j)) then array(k) = buf(i) i = i + 1 if (i >= mid) exit merge_lower else array(k) = array(j) j = j + 1 if (j >= array_len) then array(k + 1:) = buf(i:mid - 1) exit merge_lower end if end if end do merge_lower else ! The right run is shorter ! check that it is stable buf(0:array_len - mid - 1) = array(mid:array_len - 1) i = mid - 1 j = array_len - mid - 1 merge_upper: do k = array_len - 1, 0, -1 if (buf(j) >= array(i)) then array(k) = buf(j) j = j - 1 if (j < 0) exit merge_upper else array(k) = array(i) i = i - 1 if (i < 0) then array(0:k - 1) = buf(0:j) exit merge_upper end if end if end do merge_upper end if end subroutine merge pure subroutine reverse_segment(array) ! Reverse a segment of an array in place character(len=*), intent(inout) :: array(0:) integer(int_index) :: lo, hi character(len=len(array)) :: temp lo = 0 hi = size(array, kind=int_index) - 1 do while (lo < hi) temp = array(lo) array(lo) = array(hi) array(hi) = temp lo = lo + 1 hi = hi - 1 end do end subroutine reverse_segment end subroutine char_increase_ord_sort subroutine int32_decrease_ord_sort(array, work) ! A translation to Fortran 2008, of the `"Rust" sort` algorithm found in ! `slice.rs` ! https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs#L2159 ! The Rust version in turn is a simplification of the Timsort algorithm ! described in ! https://svn.python.org/projects/python/trunk/Objects/listsort.txt, as ! it drops both the use of 'galloping' to identify bounds of regions to be ! sorted and the estimation of the optimal `run size`. However it remains ! a hybrid sorting algorithm combining an iterative Merge sort controlled ! by a stack of `RUNS` identified by regions of uniformly decreasing or ! non-decreasing sequences that may be expanded to a minimum run size and ! initially processed by an insertion sort. ! ! Note the Fortran implementation simplifies the logic as it only has to ! deal with Fortran arrays of intrinsic types and not the full generality ! of Rust's arrays and lists for arbitrary types. It also adds the ! estimation of the optimal `run size` as suggested in Tim Peters' ! original `listsort.txt`, and an optional `work` array to be used as ! scratch memory. integer(int32), intent(inout) :: array(0:) integer(int32), intent(out), optional :: work(0:) integer(int32), allocatable :: buf(:) integer(int_index) :: array_size integer :: stat array_size = size(array, kind=int_index) if (present(work)) then if (size(work, kind=int_index) < array_size/2) then error stop "int32_decrease_ord_sort: work array is too small." end if ! Use the work array as scratch memory call merge_sort(array, work) else ! Allocate a buffer to use as scratch memory. allocate (buf(0:array_size/2 - 1), stat=stat) if (stat /= 0) error stop "int32_decrease_ord_sort: Allocation of buffer failed." call merge_sort(array, buf) end if contains pure function calc_min_run(n) result(min_run) !! Returns the minimum length of a run from 32-63 so that N/MIN_RUN is !! less than or equal to a power of two. See !! https://svn.python.org/projects/python/trunk/Objects/listsort.txt integer(int_index) :: min_run integer(int_index), intent(in) :: n integer(int_index) :: num, r num = n r = 0_int_index do while (num >= 64) r = ior(r, iand(num, 1_int_index)) num = ishft(num, -1_int_index) end do min_run = num + r end function calc_min_run pure subroutine insertion_sort(array) ! Sorts `ARRAY` using an insertion sort. integer(int32), intent(inout) :: array(0:) integer(int_index) :: i, j integer(int32) :: key do j = 1, size(array, kind=int_index) - 1 key = array(j) i = j - 1 do while (i >= 0) if (array(i) >= key) exit array(i + 1) = array(i) i = i - 1 end do array(i + 1) = key end do end subroutine insertion_sort pure function collapse(runs) result(r) ! Examine the stack of runs waiting to be merged, identifying adjacent runs ! to be merged until the stack invariants are restablished: ! ! 1. len(-3) > len(-2) + len(-1) ! 2. len(-2) > len(-1) integer(int_index) :: r type(run_type), intent(in), target :: runs(0:) integer(int_index) :: n logical :: test n = size(runs, kind=int_index) test = .false. if (n >= 2) then if (runs(n - 1)%base == 0 .or. & runs(n - 2)%len <= runs(n - 1)%len) then test = .true. else if (n >= 3) then ! X exists if (runs(n - 3)%len <= & runs(n - 2)%len + runs(n - 1)%len) then test = .true. ! |X| <= |Y| + |Z| => will need to merge due to rho1 or rho2 else if (n >= 4) then if (runs(n - 4)%len <= & runs(n - 3)%len + runs(n - 2)%len) then test = .true. ! |W| <= |X| + |Y| => will need to merge due to rho1 or rho3 end if end if end if end if if (test) then ! By default merge Y & Z, rho2 or rho3 if (n >= 3) then if (runs(n - 3)%len < runs(n - 1)%len) then r = n - 3 ! |X| < |Z| => merge X & Y, rho1 return end if end if r = n - 2 ! |Y| <= |Z| => merge Y & Z, rho4 return else r = -1 end if end function collapse pure subroutine insert_head(array) ! Inserts `array(0)` into the pre-sorted sequence `array(1:)` so that the ! whole `array(0:)` becomes sorted, copying the first element into ! a temporary variable, iterating until the right place for it is found. ! copying every traversed element into the slot preceding it, and finally, ! copying data from the temporary variable into the resulting hole. integer(int32), intent(inout) :: array(0:) integer(int32) :: tmp integer(int_index) :: i tmp = array(0) find_hole: do i = 1, size(array, kind=int_index) - 1 if (array(i) <= tmp) exit find_hole array(i - 1) = array(i) end do find_hole array(i - 1) = tmp end subroutine insert_head subroutine merge_sort(array, buf) ! The Rust merge sort borrows some (but not all) of the ideas from TimSort, ! which is described in detail at ! (http://svn.python.org/projects/python/trunk/Objects/listsort.txt). ! ! The algorithm identifies strictly descending and non-descending ! subsequences, which are called natural runs. Where these runs are less ! than a minimum run size they are padded by adding additional samples ! using an insertion sort. The merge process is driven by a stack of ! pending unmerged runs. Each newly found run is pushed onto the stack, ! and then pairs of adjacentd runs are merged until these two invariants ! are satisfied: ! ! 1. for every `i` in `1..size(runs)-1`: `runs(i - 1)%len > runs(i)%len` ! 2. for every `i` in `2..size(runs)-1`: `runs(i - 2)%len > ! runs(i - 1)%len + runs(i)%len` ! ! The invariants ensure that the total running time is `O(n log n)` ! worst-case. integer(int32), intent(inout) :: array(0:) integer(int32), intent(inout) :: buf(0:) integer(int_index) :: array_size, finish, min_run, r, r_count, & start type(run_type) :: runs(0:max_merge_stack - 1), left, right array_size = size(array, kind=int_index) ! Very short runs are extended using insertion sort to span at least ! min_run elements. Slices of up to this length are sorted using insertion ! sort. min_run = calc_min_run(array_size) if (array_size <= min_run) then if (array_size >= 2) call insertion_sort(array) return end if ! Following Rust sort, natural runs in `array` are identified by traversing ! it backwards. By traversing it backward, merges more often go in the ! opposite direction (forwards). According to developers of Rust sort, ! merging forwards is slightly faster than merging backwards. Therefore ! identifying runs by traversing backwards should improve performance. r_count = 0 finish = array_size - 1 do while (finish >= 0) ! Find the next natural run, and reverse it if it's strictly descending. start = finish if (start > 0) then start = start - 1 if (array(start + 1) > array(start)) then Descending: do while (start > 0) if (array(start) <= array(start - 1)) & exit Descending start = start - 1 end do Descending call reverse_segment(array(start:finish)) else Ascending: do while (start > 0) if (array(start) > array(start - 1)) exit Ascending start = start - 1 end do Ascending end if end if ! If the run is too short insert some more elements using an insertion sort. Insert: do while (start > 0) if (finish - start >= min_run - 1) exit Insert start = start - 1 call insert_head(array(start:finish)) end do Insert if (start == 0 .and. finish == array_size - 1) return runs(r_count) = run_type(base=start, & len=finish - start + 1) finish = start - 1 r_count = r_count + 1 ! Determine whether pairs of adjacent runs need to be merged to satisfy ! the invariants, and, if so, merge them. Merge_loop: do r = collapse(runs(0:r_count - 1)) if (r < 0 .or. r_count <= 1) exit Merge_loop left = runs(r + 1) right = runs(r) call merge(array(left%base: & right%base + right%len - 1), & left%len, buf) runs(r) = run_type(base=left%base, & len=left%len + right%len) if (r == r_count - 3) runs(r + 1) = runs(r + 2) r_count = r_count - 1 end do Merge_loop end do if (r_count /= 1) & error stop "MERGE_SORT completed without RUN COUNT == 1." end subroutine merge_sort pure subroutine merge(array, mid, buf) ! Merges the two non-decreasing runs `ARRAY(0:MID-1)` and `ARRAY(MID:)` ! using `BUF` as temporary storage, and stores the merged runs into ! `ARRAY(0:)`. `MID` must be > 0, and < `SIZE(ARRAY)-1`. Buffer `BUF` ! must be long enough to hold the shorter of the two runs. integer(int32), intent(inout) :: array(0:) integer(int_index), intent(in) :: mid integer(int32), intent(inout) :: buf(0:) integer(int_index) :: array_len, i, j, k array_len = size(array, kind=int_index) ! Merge first copies the shorter run into `buf`. Then, depending on which ! run was shorter, it traces the copied run and the longer run forwards ! (or backwards), comparing their next unprocessed elements and then ! copying the lesser (or greater) one into `array`. if (mid <= array_len - mid) then ! The left run is shorter. buf(0:mid - 1) = array(0:mid - 1) i = 0 j = mid merge_lower: do k = 0, array_len - 1 if (buf(i) >= array(j)) then array(k) = buf(i) i = i + 1 if (i >= mid) exit merge_lower else array(k) = array(j) j = j + 1 if (j >= array_len) then array(k + 1:) = buf(i:mid - 1) exit merge_lower end if end if end do merge_lower else ! The right run is shorter ! check that it is stable buf(0:array_len - mid - 1) = array(mid:array_len - 1) i = mid - 1 j = array_len - mid - 1 merge_upper: do k = array_len - 1, 0, -1 if (buf(j) <= array(i)) then array(k) = buf(j) j = j - 1 if (j < 0) exit merge_upper else array(k) = array(i) i = i - 1 if (i < 0) then array(0:k - 1) = buf(0:j) exit merge_upper end if end if end do merge_upper end if end subroutine merge pure subroutine reverse_segment(array) ! Reverse a segment of an array in place integer(int32), intent(inout) :: array(0:) integer(int_index) :: lo, hi integer(int32) :: temp lo = 0 hi = size(array, kind=int_index) - 1 do while (lo < hi) temp = array(lo) array(lo) = array(hi) array(hi) = temp lo = lo + 1 hi = hi - 1 end do end subroutine reverse_segment end subroutine int32_decrease_ord_sort subroutine int64_decrease_ord_sort(array, work) ! A translation to Fortran 2008, of the `"Rust" sort` algorithm found in ! `slice.rs` ! https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs#L2159 ! The Rust version in turn is a simplification of the Timsort algorithm ! described in ! https://svn.python.org/projects/python/trunk/Objects/listsort.txt, as ! it drops both the use of 'galloping' to identify bounds of regions to be ! sorted and the estimation of the optimal `run size`. However it remains ! a hybrid sorting algorithm combining an iterative Merge sort controlled ! by a stack of `RUNS` identified by regions of uniformly decreasing or ! non-decreasing sequences that may be expanded to a minimum run size and ! initially processed by an insertion sort. ! ! Note the Fortran implementation simplifies the logic as it only has to ! deal with Fortran arrays of intrinsic types and not the full generality ! of Rust's arrays and lists for arbitrary types. It also adds the ! estimation of the optimal `run size` as suggested in Tim Peters' ! original `listsort.txt`, and an optional `work` array to be used as ! scratch memory. integer(int64), intent(inout) :: array(0:) integer(int64), intent(out), optional :: work(0:) integer(int64), allocatable :: buf(:) integer(int_index) :: array_size integer :: stat array_size = size(array, kind=int_index) if (present(work)) then if (size(work, kind=int_index) < array_size/2) then error stop "int64_decrease_ord_sort: work array is too small." end if ! Use the work array as scratch memory call merge_sort(array, work) else ! Allocate a buffer to use as scratch memory. allocate (buf(0:array_size/2 - 1), stat=stat) if (stat /= 0) error stop "int64_decrease_ord_sort: Allocation of buffer failed." call merge_sort(array, buf) end if contains pure function calc_min_run(n) result(min_run) !! Returns the minimum length of a run from 32-63 so that N/MIN_RUN is !! less than or equal to a power of two. See !! https://svn.python.org/projects/python/trunk/Objects/listsort.txt integer(int_index) :: min_run integer(int_index), intent(in) :: n integer(int_index) :: num, r num = n r = 0_int_index do while (num >= 64) r = ior(r, iand(num, 1_int_index)) num = ishft(num, -1_int_index) end do min_run = num + r end function calc_min_run pure subroutine insertion_sort(array) ! Sorts `ARRAY` using an insertion sort. integer(int64), intent(inout) :: array(0:) integer(int_index) :: i, j integer(int64) :: key do j = 1, size(array, kind=int_index) - 1 key = array(j) i = j - 1 do while (i >= 0) if (array(i) >= key) exit array(i + 1) = array(i) i = i - 1 end do array(i + 1) = key end do end subroutine insertion_sort pure function collapse(runs) result(r) ! Examine the stack of runs waiting to be merged, identifying adjacent runs ! to be merged until the stack invariants are restablished: ! ! 1. len(-3) > len(-2) + len(-1) ! 2. len(-2) > len(-1) integer(int_index) :: r type(run_type), intent(in), target :: runs(0:) integer(int_index) :: n logical :: test n = size(runs, kind=int_index) test = .false. if (n >= 2) then if (runs(n - 1)%base == 0 .or. & runs(n - 2)%len <= runs(n - 1)%len) then test = .true. else if (n >= 3) then ! X exists if (runs(n - 3)%len <= & runs(n - 2)%len + runs(n - 1)%len) then test = .true. ! |X| <= |Y| + |Z| => will need to merge due to rho1 or rho2 else if (n >= 4) then if (runs(n - 4)%len <= & runs(n - 3)%len + runs(n - 2)%len) then test = .true. ! |W| <= |X| + |Y| => will need to merge due to rho1 or rho3 end if end if end if end if if (test) then ! By default merge Y & Z, rho2 or rho3 if (n >= 3) then if (runs(n - 3)%len < runs(n - 1)%len) then r = n - 3 ! |X| < |Z| => merge X & Y, rho1 return end if end if r = n - 2 ! |Y| <= |Z| => merge Y & Z, rho4 return else r = -1 end if end function collapse pure subroutine insert_head(array) ! Inserts `array(0)` into the pre-sorted sequence `array(1:)` so that the ! whole `array(0:)` becomes sorted, copying the first element into ! a temporary variable, iterating until the right place for it is found. ! copying every traversed element into the slot preceding it, and finally, ! copying data from the temporary variable into the resulting hole. integer(int64), intent(inout) :: array(0:) integer(int64) :: tmp integer(int_index) :: i tmp = array(0) find_hole: do i = 1, size(array, kind=int_index) - 1 if (array(i) <= tmp) exit find_hole array(i - 1) = array(i) end do find_hole array(i - 1) = tmp end subroutine insert_head subroutine merge_sort(array, buf) ! The Rust merge sort borrows some (but not all) of the ideas from TimSort, ! which is described in detail at ! (http://svn.python.org/projects/python/trunk/Objects/listsort.txt). ! ! The algorithm identifies strictly descending and non-descending ! subsequences, which are called natural runs. Where these runs are less ! than a minimum run size they are padded by adding additional samples ! using an insertion sort. The merge process is driven by a stack of ! pending unmerged runs. Each newly found run is pushed onto the stack, ! and then pairs of adjacentd runs are merged until these two invariants ! are satisfied: ! ! 1. for every `i` in `1..size(runs)-1`: `runs(i - 1)%len > runs(i)%len` ! 2. for every `i` in `2..size(runs)-1`: `runs(i - 2)%len > ! runs(i - 1)%len + runs(i)%len` ! ! The invariants ensure that the total running time is `O(n log n)` ! worst-case. integer(int64), intent(inout) :: array(0:) integer(int64), intent(inout) :: buf(0:) integer(int_index) :: array_size, finish, min_run, r, r_count, & start type(run_type) :: runs(0:max_merge_stack - 1), left, right array_size = size(array, kind=int_index) ! Very short runs are extended using insertion sort to span at least ! min_run elements. Slices of up to this length are sorted using insertion ! sort. min_run = calc_min_run(array_size) if (array_size <= min_run) then if (array_size >= 2) call insertion_sort(array) return end if ! Following Rust sort, natural runs in `array` are identified by traversing ! it backwards. By traversing it backward, merges more often go in the ! opposite direction (forwards). According to developers of Rust sort, ! merging forwards is slightly faster than merging backwards. Therefore ! identifying runs by traversing backwards should improve performance. r_count = 0 finish = array_size - 1 do while (finish >= 0) ! Find the next natural run, and reverse it if it's strictly descending. start = finish if (start > 0) then start = start - 1 if (array(start + 1) > array(start)) then Descending: do while (start > 0) if (array(start) <= array(start - 1)) & exit Descending start = start - 1 end do Descending call reverse_segment(array(start:finish)) else Ascending: do while (start > 0) if (array(start) > array(start - 1)) exit Ascending start = start - 1 end do Ascending end if end if ! If the run is too short insert some more elements using an insertion sort. Insert: do while (start > 0) if (finish - start >= min_run - 1) exit Insert start = start - 1 call insert_head(array(start:finish)) end do Insert if (start == 0 .and. finish == array_size - 1) return runs(r_count) = run_type(base=start, & len=finish - start + 1) finish = start - 1 r_count = r_count + 1 ! Determine whether pairs of adjacent runs need to be merged to satisfy ! the invariants, and, if so, merge them. Merge_loop: do r = collapse(runs(0:r_count - 1)) if (r < 0 .or. r_count <= 1) exit Merge_loop left = runs(r + 1) right = runs(r) call merge(array(left%base: & right%base + right%len - 1), & left%len, buf) runs(r) = run_type(base=left%base, & len=left%len + right%len) if (r == r_count - 3) runs(r + 1) = runs(r + 2) r_count = r_count - 1 end do Merge_loop end do if (r_count /= 1) & error stop "MERGE_SORT completed without RUN COUNT == 1." end subroutine merge_sort pure subroutine merge(array, mid, buf) ! Merges the two non-decreasing runs `ARRAY(0:MID-1)` and `ARRAY(MID:)` ! using `BUF` as temporary storage, and stores the merged runs into ! `ARRAY(0:)`. `MID` must be > 0, and < `SIZE(ARRAY)-1`. Buffer `BUF` ! must be long enough to hold the shorter of the two runs. integer(int64), intent(inout) :: array(0:) integer(int_index), intent(in) :: mid integer(int64), intent(inout) :: buf(0:) integer(int_index) :: array_len, i, j, k array_len = size(array, kind=int_index) ! Merge first copies the shorter run into `buf`. Then, depending on which ! run was shorter, it traces the copied run and the longer run forwards ! (or backwards), comparing their next unprocessed elements and then ! copying the lesser (or greater) one into `array`. if (mid <= array_len - mid) then ! The left run is shorter. buf(0:mid - 1) = array(0:mid - 1) i = 0 j = mid merge_lower: do k = 0, array_len - 1 if (buf(i) >= array(j)) then array(k) = buf(i) i = i + 1 if (i >= mid) exit merge_lower else array(k) = array(j) j = j + 1 if (j >= array_len) then array(k + 1:) = buf(i:mid - 1) exit merge_lower end if end if end do merge_lower else ! The right run is shorter ! check that it is stable buf(0:array_len - mid - 1) = array(mid:array_len - 1) i = mid - 1 j = array_len - mid - 1 merge_upper: do k = array_len - 1, 0, -1 if (buf(j) <= array(i)) then array(k) = buf(j) j = j - 1 if (j < 0) exit merge_upper else array(k) = array(i) i = i - 1 if (i < 0) then array(0:k - 1) = buf(0:j) exit merge_upper end if end if end do merge_upper end if end subroutine merge pure subroutine reverse_segment(array) ! Reverse a segment of an array in place integer(int64), intent(inout) :: array(0:) integer(int_index) :: lo, hi integer(int64) :: temp lo = 0 hi = size(array, kind=int_index) - 1 do while (lo < hi) temp = array(lo) array(lo) = array(hi) array(hi) = temp lo = lo + 1 hi = hi - 1 end do end subroutine reverse_segment end subroutine int64_decrease_ord_sort subroutine sp_decrease_ord_sort(array, work) ! A translation to Fortran 2008, of the `"Rust" sort` algorithm found in ! `slice.rs` ! https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs#L2159 ! The Rust version in turn is a simplification of the Timsort algorithm ! described in ! https://svn.python.org/projects/python/trunk/Objects/listsort.txt, as ! it drops both the use of 'galloping' to identify bounds of regions to be ! sorted and the estimation of the optimal `run size`. However it remains ! a hybrid sorting algorithm combining an iterative Merge sort controlled ! by a stack of `RUNS` identified by regions of uniformly decreasing or ! non-decreasing sequences that may be expanded to a minimum run size and ! initially processed by an insertion sort. ! ! Note the Fortran implementation simplifies the logic as it only has to ! deal with Fortran arrays of intrinsic types and not the full generality ! of Rust's arrays and lists for arbitrary types. It also adds the ! estimation of the optimal `run size` as suggested in Tim Peters' ! original `listsort.txt`, and an optional `work` array to be used as ! scratch memory. real(sp), intent(inout) :: array(0:) real(sp), intent(out), optional :: work(0:) real(sp), allocatable :: buf(:) integer(int_index) :: array_size integer :: stat array_size = size(array, kind=int_index) if (present(work)) then if (size(work, kind=int_index) < array_size/2) then error stop "sp_decrease_ord_sort: work array is too small." end if ! Use the work array as scratch memory call merge_sort(array, work) else ! Allocate a buffer to use as scratch memory. allocate (buf(0:array_size/2 - 1), stat=stat) if (stat /= 0) error stop "sp_decrease_ord_sort: Allocation of buffer failed." call merge_sort(array, buf) end if contains pure function calc_min_run(n) result(min_run) !! Returns the minimum length of a run from 32-63 so that N/MIN_RUN is !! less than or equal to a power of two. See !! https://svn.python.org/projects/python/trunk/Objects/listsort.txt integer(int_index) :: min_run integer(int_index), intent(in) :: n integer(int_index) :: num, r num = n r = 0_int_index do while (num >= 64) r = ior(r, iand(num, 1_int_index)) num = ishft(num, -1_int_index) end do min_run = num + r end function calc_min_run pure subroutine insertion_sort(array) ! Sorts `ARRAY` using an insertion sort. real(sp), intent(inout) :: array(0:) integer(int_index) :: i, j real(sp) :: key do j = 1, size(array, kind=int_index) - 1 key = array(j) i = j - 1 do while (i >= 0) if (array(i) >= key) exit array(i + 1) = array(i) i = i - 1 end do array(i + 1) = key end do end subroutine insertion_sort pure function collapse(runs) result(r) ! Examine the stack of runs waiting to be merged, identifying adjacent runs ! to be merged until the stack invariants are restablished: ! ! 1. len(-3) > len(-2) + len(-1) ! 2. len(-2) > len(-1) integer(int_index) :: r type(run_type), intent(in), target :: runs(0:) integer(int_index) :: n logical :: test n = size(runs, kind=int_index) test = .false. if (n >= 2) then if (runs(n - 1)%base == 0 .or. & runs(n - 2)%len <= runs(n - 1)%len) then test = .true. else if (n >= 3) then ! X exists if (runs(n - 3)%len <= & runs(n - 2)%len + runs(n - 1)%len) then test = .true. ! |X| <= |Y| + |Z| => will need to merge due to rho1 or rho2 else if (n >= 4) then if (runs(n - 4)%len <= & runs(n - 3)%len + runs(n - 2)%len) then test = .true. ! |W| <= |X| + |Y| => will need to merge due to rho1 or rho3 end if end if end if end if if (test) then ! By default merge Y & Z, rho2 or rho3 if (n >= 3) then if (runs(n - 3)%len < runs(n - 1)%len) then r = n - 3 ! |X| < |Z| => merge X & Y, rho1 return end if end if r = n - 2 ! |Y| <= |Z| => merge Y & Z, rho4 return else r = -1 end if end function collapse pure subroutine insert_head(array) ! Inserts `array(0)` into the pre-sorted sequence `array(1:)` so that the ! whole `array(0:)` becomes sorted, copying the first element into ! a temporary variable, iterating until the right place for it is found. ! copying every traversed element into the slot preceding it, and finally, ! copying data from the temporary variable into the resulting hole. real(sp), intent(inout) :: array(0:) real(sp) :: tmp integer(int_index) :: i tmp = array(0) find_hole: do i = 1, size(array, kind=int_index) - 1 if (array(i) <= tmp) exit find_hole array(i - 1) = array(i) end do find_hole array(i - 1) = tmp end subroutine insert_head subroutine merge_sort(array, buf) ! The Rust merge sort borrows some (but not all) of the ideas from TimSort, ! which is described in detail at ! (http://svn.python.org/projects/python/trunk/Objects/listsort.txt). ! ! The algorithm identifies strictly descending and non-descending ! subsequences, which are called natural runs. Where these runs are less ! than a minimum run size they are padded by adding additional samples ! using an insertion sort. The merge process is driven by a stack of ! pending unmerged runs. Each newly found run is pushed onto the stack, ! and then pairs of adjacentd runs are merged until these two invariants ! are satisfied: ! ! 1. for every `i` in `1..size(runs)-1`: `runs(i - 1)%len > runs(i)%len` ! 2. for every `i` in `2..size(runs)-1`: `runs(i - 2)%len > ! runs(i - 1)%len + runs(i)%len` ! ! The invariants ensure that the total running time is `O(n log n)` ! worst-case. real(sp), intent(inout) :: array(0:) real(sp), intent(inout) :: buf(0:) integer(int_index) :: array_size, finish, min_run, r, r_count, & start type(run_type) :: runs(0:max_merge_stack - 1), left, right array_size = size(array, kind=int_index) ! Very short runs are extended using insertion sort to span at least ! min_run elements. Slices of up to this length are sorted using insertion ! sort. min_run = calc_min_run(array_size) if (array_size <= min_run) then if (array_size >= 2) call insertion_sort(array) return end if ! Following Rust sort, natural runs in `array` are identified by traversing ! it backwards. By traversing it backward, merges more often go in the ! opposite direction (forwards). According to developers of Rust sort, ! merging forwards is slightly faster than merging backwards. Therefore ! identifying runs by traversing backwards should improve performance. r_count = 0 finish = array_size - 1 do while (finish >= 0) ! Find the next natural run, and reverse it if it's strictly descending. start = finish if (start > 0) then start = start - 1 if (array(start + 1) > array(start)) then Descending: do while (start > 0) if (array(start) <= array(start - 1)) & exit Descending start = start - 1 end do Descending call reverse_segment(array(start:finish)) else Ascending: do while (start > 0) if (array(start) > array(start - 1)) exit Ascending start = start - 1 end do Ascending end if end if ! If the run is too short insert some more elements using an insertion sort. Insert: do while (start > 0) if (finish - start >= min_run - 1) exit Insert start = start - 1 call insert_head(array(start:finish)) end do Insert if (start == 0 .and. finish == array_size - 1) return runs(r_count) = run_type(base=start, & len=finish - start + 1) finish = start - 1 r_count = r_count + 1 ! Determine whether pairs of adjacent runs need to be merged to satisfy ! the invariants, and, if so, merge them. Merge_loop: do r = collapse(runs(0:r_count - 1)) if (r < 0 .or. r_count <= 1) exit Merge_loop left = runs(r + 1) right = runs(r) call merge(array(left%base: & right%base + right%len - 1), & left%len, buf) runs(r) = run_type(base=left%base, & len=left%len + right%len) if (r == r_count - 3) runs(r + 1) = runs(r + 2) r_count = r_count - 1 end do Merge_loop end do if (r_count /= 1) & error stop "MERGE_SORT completed without RUN COUNT == 1." end subroutine merge_sort pure subroutine merge(array, mid, buf) ! Merges the two non-decreasing runs `ARRAY(0:MID-1)` and `ARRAY(MID:)` ! using `BUF` as temporary storage, and stores the merged runs into ! `ARRAY(0:)`. `MID` must be > 0, and < `SIZE(ARRAY)-1`. Buffer `BUF` ! must be long enough to hold the shorter of the two runs. real(sp), intent(inout) :: array(0:) integer(int_index), intent(in) :: mid real(sp), intent(inout) :: buf(0:) integer(int_index) :: array_len, i, j, k array_len = size(array, kind=int_index) ! Merge first copies the shorter run into `buf`. Then, depending on which ! run was shorter, it traces the copied run and the longer run forwards ! (or backwards), comparing their next unprocessed elements and then ! copying the lesser (or greater) one into `array`. if (mid <= array_len - mid) then ! The left run is shorter. buf(0:mid - 1) = array(0:mid - 1) i = 0 j = mid merge_lower: do k = 0, array_len - 1 if (buf(i) >= array(j)) then array(k) = buf(i) i = i + 1 if (i >= mid) exit merge_lower else array(k) = array(j) j = j + 1 if (j >= array_len) then array(k + 1:) = buf(i:mid - 1) exit merge_lower end if end if end do merge_lower else ! The right run is shorter ! check that it is stable buf(0:array_len - mid - 1) = array(mid:array_len - 1) i = mid - 1 j = array_len - mid - 1 merge_upper: do k = array_len - 1, 0, -1 if (buf(j) <= array(i)) then array(k) = buf(j) j = j - 1 if (j < 0) exit merge_upper else array(k) = array(i) i = i - 1 if (i < 0) then array(0:k - 1) = buf(0:j) exit merge_upper end if end if end do merge_upper end if end subroutine merge pure subroutine reverse_segment(array) ! Reverse a segment of an array in place real(sp), intent(inout) :: array(0:) integer(int_index) :: lo, hi real(sp) :: temp lo = 0 hi = size(array, kind=int_index) - 1 do while (lo < hi) temp = array(lo) array(lo) = array(hi) array(hi) = temp lo = lo + 1 hi = hi - 1 end do end subroutine reverse_segment end subroutine sp_decrease_ord_sort subroutine dp_decrease_ord_sort(array, work) ! A translation to Fortran 2008, of the `"Rust" sort` algorithm found in ! `slice.rs` ! https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs#L2159 ! The Rust version in turn is a simplification of the Timsort algorithm ! described in ! https://svn.python.org/projects/python/trunk/Objects/listsort.txt, as ! it drops both the use of 'galloping' to identify bounds of regions to be ! sorted and the estimation of the optimal `run size`. However it remains ! a hybrid sorting algorithm combining an iterative Merge sort controlled ! by a stack of `RUNS` identified by regions of uniformly decreasing or ! non-decreasing sequences that may be expanded to a minimum run size and ! initially processed by an insertion sort. ! ! Note the Fortran implementation simplifies the logic as it only has to ! deal with Fortran arrays of intrinsic types and not the full generality ! of Rust's arrays and lists for arbitrary types. It also adds the ! estimation of the optimal `run size` as suggested in Tim Peters' ! original `listsort.txt`, and an optional `work` array to be used as ! scratch memory. real(dp), intent(inout) :: array(0:) real(dp), intent(out), optional :: work(0:) real(dp), allocatable :: buf(:) integer(int_index) :: array_size integer :: stat array_size = size(array, kind=int_index) if (present(work)) then if (size(work, kind=int_index) < array_size/2) then error stop "dp_decrease_ord_sort: work array is too small." end if ! Use the work array as scratch memory call merge_sort(array, work) else ! Allocate a buffer to use as scratch memory. allocate (buf(0:array_size/2 - 1), stat=stat) if (stat /= 0) error stop "dp_decrease_ord_sort: Allocation of buffer failed." call merge_sort(array, buf) end if contains pure function calc_min_run(n) result(min_run) !! Returns the minimum length of a run from 32-63 so that N/MIN_RUN is !! less than or equal to a power of two. See !! https://svn.python.org/projects/python/trunk/Objects/listsort.txt integer(int_index) :: min_run integer(int_index), intent(in) :: n integer(int_index) :: num, r num = n r = 0_int_index do while (num >= 64) r = ior(r, iand(num, 1_int_index)) num = ishft(num, -1_int_index) end do min_run = num + r end function calc_min_run pure subroutine insertion_sort(array) ! Sorts `ARRAY` using an insertion sort. real(dp), intent(inout) :: array(0:) integer(int_index) :: i, j real(dp) :: key do j = 1, size(array, kind=int_index) - 1 key = array(j) i = j - 1 do while (i >= 0) if (array(i) >= key) exit array(i + 1) = array(i) i = i - 1 end do array(i + 1) = key end do end subroutine insertion_sort pure function collapse(runs) result(r) ! Examine the stack of runs waiting to be merged, identifying adjacent runs ! to be merged until the stack invariants are restablished: ! ! 1. len(-3) > len(-2) + len(-1) ! 2. len(-2) > len(-1) integer(int_index) :: r type(run_type), intent(in), target :: runs(0:) integer(int_index) :: n logical :: test n = size(runs, kind=int_index) test = .false. if (n >= 2) then if (runs(n - 1)%base == 0 .or. & runs(n - 2)%len <= runs(n - 1)%len) then test = .true. else if (n >= 3) then ! X exists if (runs(n - 3)%len <= & runs(n - 2)%len + runs(n - 1)%len) then test = .true. ! |X| <= |Y| + |Z| => will need to merge due to rho1 or rho2 else if (n >= 4) then if (runs(n - 4)%len <= & runs(n - 3)%len + runs(n - 2)%len) then test = .true. ! |W| <= |X| + |Y| => will need to merge due to rho1 or rho3 end if end if end if end if if (test) then ! By default merge Y & Z, rho2 or rho3 if (n >= 3) then if (runs(n - 3)%len < runs(n - 1)%len) then r = n - 3 ! |X| < |Z| => merge X & Y, rho1 return end if end if r = n - 2 ! |Y| <= |Z| => merge Y & Z, rho4 return else r = -1 end if end function collapse pure subroutine insert_head(array) ! Inserts `array(0)` into the pre-sorted sequence `array(1:)` so that the ! whole `array(0:)` becomes sorted, copying the first element into ! a temporary variable, iterating until the right place for it is found. ! copying every traversed element into the slot preceding it, and finally, ! copying data from the temporary variable into the resulting hole. real(dp), intent(inout) :: array(0:) real(dp) :: tmp integer(int_index) :: i tmp = array(0) find_hole: do i = 1, size(array, kind=int_index) - 1 if (array(i) <= tmp) exit find_hole array(i - 1) = array(i) end do find_hole array(i - 1) = tmp end subroutine insert_head subroutine merge_sort(array, buf) ! The Rust merge sort borrows some (but not all) of the ideas from TimSort, ! which is described in detail at ! (http://svn.python.org/projects/python/trunk/Objects/listsort.txt). ! ! The algorithm identifies strictly descending and non-descending ! subsequences, which are called natural runs. Where these runs are less ! than a minimum run size they are padded by adding additional samples ! using an insertion sort. The merge process is driven by a stack of ! pending unmerged runs. Each newly found run is pushed onto the stack, ! and then pairs of adjacentd runs are merged until these two invariants ! are satisfied: ! ! 1. for every `i` in `1..size(runs)-1`: `runs(i - 1)%len > runs(i)%len` ! 2. for every `i` in `2..size(runs)-1`: `runs(i - 2)%len > ! runs(i - 1)%len + runs(i)%len` ! ! The invariants ensure that the total running time is `O(n log n)` ! worst-case. real(dp), intent(inout) :: array(0:) real(dp), intent(inout) :: buf(0:) integer(int_index) :: array_size, finish, min_run, r, r_count, & start type(run_type) :: runs(0:max_merge_stack - 1), left, right array_size = size(array, kind=int_index) ! Very short runs are extended using insertion sort to span at least ! min_run elements. Slices of up to this length are sorted using insertion ! sort. min_run = calc_min_run(array_size) if (array_size <= min_run) then if (array_size >= 2) call insertion_sort(array) return end if ! Following Rust sort, natural runs in `array` are identified by traversing ! it backwards. By traversing it backward, merges more often go in the ! opposite direction (forwards). According to developers of Rust sort, ! merging forwards is slightly faster than merging backwards. Therefore ! identifying runs by traversing backwards should improve performance. r_count = 0 finish = array_size - 1 do while (finish >= 0) ! Find the next natural run, and reverse it if it's strictly descending. start = finish if (start > 0) then start = start - 1 if (array(start + 1) > array(start)) then Descending: do while (start > 0) if (array(start) <= array(start - 1)) & exit Descending start = start - 1 end do Descending call reverse_segment(array(start:finish)) else Ascending: do while (start > 0) if (array(start) > array(start - 1)) exit Ascending start = start - 1 end do Ascending end if end if ! If the run is too short insert some more elements using an insertion sort. Insert: do while (start > 0) if (finish - start >= min_run - 1) exit Insert start = start - 1 call insert_head(array(start:finish)) end do Insert if (start == 0 .and. finish == array_size - 1) return runs(r_count) = run_type(base=start, & len=finish - start + 1) finish = start - 1 r_count = r_count + 1 ! Determine whether pairs of adjacent runs need to be merged to satisfy ! the invariants, and, if so, merge them. Merge_loop: do r = collapse(runs(0:r_count - 1)) if (r < 0 .or. r_count <= 1) exit Merge_loop left = runs(r + 1) right = runs(r) call merge(array(left%base: & right%base + right%len - 1), & left%len, buf) runs(r) = run_type(base=left%base, & len=left%len + right%len) if (r == r_count - 3) runs(r + 1) = runs(r + 2) r_count = r_count - 1 end do Merge_loop end do if (r_count /= 1) & error stop "MERGE_SORT completed without RUN COUNT == 1." end subroutine merge_sort pure subroutine merge(array, mid, buf) ! Merges the two non-decreasing runs `ARRAY(0:MID-1)` and `ARRAY(MID:)` ! using `BUF` as temporary storage, and stores the merged runs into ! `ARRAY(0:)`. `MID` must be > 0, and < `SIZE(ARRAY)-1`. Buffer `BUF` ! must be long enough to hold the shorter of the two runs. real(dp), intent(inout) :: array(0:) integer(int_index), intent(in) :: mid real(dp), intent(inout) :: buf(0:) integer(int_index) :: array_len, i, j, k array_len = size(array, kind=int_index) ! Merge first copies the shorter run into `buf`. Then, depending on which ! run was shorter, it traces the copied run and the longer run forwards ! (or backwards), comparing their next unprocessed elements and then ! copying the lesser (or greater) one into `array`. if (mid <= array_len - mid) then ! The left run is shorter. buf(0:mid - 1) = array(0:mid - 1) i = 0 j = mid merge_lower: do k = 0, array_len - 1 if (buf(i) >= array(j)) then array(k) = buf(i) i = i + 1 if (i >= mid) exit merge_lower else array(k) = array(j) j = j + 1 if (j >= array_len) then array(k + 1:) = buf(i:mid - 1) exit merge_lower end if end if end do merge_lower else ! The right run is shorter ! check that it is stable buf(0:array_len - mid - 1) = array(mid:array_len - 1) i = mid - 1 j = array_len - mid - 1 merge_upper: do k = array_len - 1, 0, -1 if (buf(j) <= array(i)) then array(k) = buf(j) j = j - 1 if (j < 0) exit merge_upper else array(k) = array(i) i = i - 1 if (i < 0) then array(0:k - 1) = buf(0:j) exit merge_upper end if end if end do merge_upper end if end subroutine merge pure subroutine reverse_segment(array) ! Reverse a segment of an array in place real(dp), intent(inout) :: array(0:) integer(int_index) :: lo, hi real(dp) :: temp lo = 0 hi = size(array, kind=int_index) - 1 do while (lo < hi) temp = array(lo) array(lo) = array(hi) array(hi) = temp lo = lo + 1 hi = hi - 1 end do end subroutine reverse_segment end subroutine dp_decrease_ord_sort subroutine char_decrease_ord_sort(array, work) ! A translation to Fortran 2008, of the `"Rust" sort` algorithm found in ! `slice.rs` ! https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs#L2159 ! The Rust version in turn is a simplification of the Timsort algorithm ! described in ! https://svn.python.org/projects/python/trunk/Objects/listsort.txt, as ! it drops both the use of 'galloping' to identify bounds of regions to be ! sorted and the estimation of the optimal `run size`. However it remains ! a hybrid sorting algorithm combining an iterative Merge sort controlled ! by a stack of `RUNS` identified by regions of uniformly decreasing or ! non-decreasing sequences that may be expanded to a minimum run size and ! initially processed by an insertion sort. ! ! Note the Fortran implementation simplifies the logic as it only has to ! deal with Fortran arrays of intrinsic types and not the full generality ! of Rust's arrays and lists for arbitrary types. It also adds the ! estimation of the optimal `run size` as suggested in Tim Peters' ! original `listsort.txt`, and an optional `work` array to be used as ! scratch memory. character(len=*), intent(inout) :: array(0:) character(len=len(array)), intent(out), optional :: work(0:) character(len=:), allocatable :: buf(:) integer(int_index) :: array_size integer :: stat array_size = size(array, kind=int_index) if (present(work)) then if (size(work, kind=int_index) < array_size/2) then error stop "char_decrease_ord_sort: work array is too small." end if ! Use the work array as scratch memory call merge_sort(array, work) else ! Allocate a buffer to use as scratch memory. allocate (character(len=len(array)) :: buf(0:array_size/2 - 1), & stat=stat) if (stat /= 0) error stop "char_decrease_ord_sort: Allocation of buffer failed." call merge_sort(array, buf) end if contains pure function calc_min_run(n) result(min_run) !! Returns the minimum length of a run from 32-63 so that N/MIN_RUN is !! less than or equal to a power of two. See !! https://svn.python.org/projects/python/trunk/Objects/listsort.txt integer(int_index) :: min_run integer(int_index), intent(in) :: n integer(int_index) :: num, r num = n r = 0_int_index do while (num >= 64) r = ior(r, iand(num, 1_int_index)) num = ishft(num, -1_int_index) end do min_run = num + r end function calc_min_run pure subroutine insertion_sort(array) ! Sorts `ARRAY` using an insertion sort. character(len=*), intent(inout) :: array(0:) integer(int_index) :: i, j character(len=len(array)) :: key do j = 1, size(array, kind=int_index) - 1 key = array(j) i = j - 1 do while (i >= 0) if (array(i) >= key) exit array(i + 1) = array(i) i = i - 1 end do array(i + 1) = key end do end subroutine insertion_sort pure function collapse(runs) result(r) ! Examine the stack of runs waiting to be merged, identifying adjacent runs ! to be merged until the stack invariants are restablished: ! ! 1. len(-3) > len(-2) + len(-1) ! 2. len(-2) > len(-1) integer(int_index) :: r type(run_type), intent(in), target :: runs(0:) integer(int_index) :: n logical :: test n = size(runs, kind=int_index) test = .false. if (n >= 2) then if (runs(n - 1)%base == 0 .or. & runs(n - 2)%len <= runs(n - 1)%len) then test = .true. else if (n >= 3) then ! X exists if (runs(n - 3)%len <= & runs(n - 2)%len + runs(n - 1)%len) then test = .true. ! |X| <= |Y| + |Z| => will need to merge due to rho1 or rho2 else if (n >= 4) then if (runs(n - 4)%len <= & runs(n - 3)%len + runs(n - 2)%len) then test = .true. ! |W| <= |X| + |Y| => will need to merge due to rho1 or rho3 end if end if end if end if if (test) then ! By default merge Y & Z, rho2 or rho3 if (n >= 3) then if (runs(n - 3)%len < runs(n - 1)%len) then r = n - 3 ! |X| < |Z| => merge X & Y, rho1 return end if end if r = n - 2 ! |Y| <= |Z| => merge Y & Z, rho4 return else r = -1 end if end function collapse pure subroutine insert_head(array) ! Inserts `array(0)` into the pre-sorted sequence `array(1:)` so that the ! whole `array(0:)` becomes sorted, copying the first element into ! a temporary variable, iterating until the right place for it is found. ! copying every traversed element into the slot preceding it, and finally, ! copying data from the temporary variable into the resulting hole. character(len=*), intent(inout) :: array(0:) character(len=len(array)) :: tmp integer(int_index) :: i tmp = array(0) find_hole: do i = 1, size(array, kind=int_index) - 1 if (array(i) <= tmp) exit find_hole array(i - 1) = array(i) end do find_hole array(i - 1) = tmp end subroutine insert_head subroutine merge_sort(array, buf) ! The Rust merge sort borrows some (but not all) of the ideas from TimSort, ! which is described in detail at ! (http://svn.python.org/projects/python/trunk/Objects/listsort.txt). ! ! The algorithm identifies strictly descending and non-descending ! subsequences, which are called natural runs. Where these runs are less ! than a minimum run size they are padded by adding additional samples ! using an insertion sort. The merge process is driven by a stack of ! pending unmerged runs. Each newly found run is pushed onto the stack, ! and then pairs of adjacentd runs are merged until these two invariants ! are satisfied: ! ! 1. for every `i` in `1..size(runs)-1`: `runs(i - 1)%len > runs(i)%len` ! 2. for every `i` in `2..size(runs)-1`: `runs(i - 2)%len > ! runs(i - 1)%len + runs(i)%len` ! ! The invariants ensure that the total running time is `O(n log n)` ! worst-case. character(len=*), intent(inout) :: array(0:) character(len=len(array)), intent(inout) :: buf(0:) integer(int_index) :: array_size, finish, min_run, r, r_count, & start type(run_type) :: runs(0:max_merge_stack - 1), left, right array_size = size(array, kind=int_index) ! Very short runs are extended using insertion sort to span at least ! min_run elements. Slices of up to this length are sorted using insertion ! sort. min_run = calc_min_run(array_size) if (array_size <= min_run) then if (array_size >= 2) call insertion_sort(array) return end if ! Following Rust sort, natural runs in `array` are identified by traversing ! it backwards. By traversing it backward, merges more often go in the ! opposite direction (forwards). According to developers of Rust sort, ! merging forwards is slightly faster than merging backwards. Therefore ! identifying runs by traversing backwards should improve performance. r_count = 0 finish = array_size - 1 do while (finish >= 0) ! Find the next natural run, and reverse it if it's strictly descending. start = finish if (start > 0) then start = start - 1 if (array(start + 1) > array(start)) then Descending: do while (start > 0) if (array(start) <= array(start - 1)) & exit Descending start = start - 1 end do Descending call reverse_segment(array(start:finish)) else Ascending: do while (start > 0) if (array(start) > array(start - 1)) exit Ascending start = start - 1 end do Ascending end if end if ! If the run is too short insert some more elements using an insertion sort. Insert: do while (start > 0) if (finish - start >= min_run - 1) exit Insert start = start - 1 call insert_head(array(start:finish)) end do Insert if (start == 0 .and. finish == array_size - 1) return runs(r_count) = run_type(base=start, & len=finish - start + 1) finish = start - 1 r_count = r_count + 1 ! Determine whether pairs of adjacent runs need to be merged to satisfy ! the invariants, and, if so, merge them. Merge_loop: do r = collapse(runs(0:r_count - 1)) if (r < 0 .or. r_count <= 1) exit Merge_loop left = runs(r + 1) right = runs(r) call merge(array(left%base: & right%base + right%len - 1), & left%len, buf) runs(r) = run_type(base=left%base, & len=left%len + right%len) if (r == r_count - 3) runs(r + 1) = runs(r + 2) r_count = r_count - 1 end do Merge_loop end do if (r_count /= 1) & error stop "MERGE_SORT completed without RUN COUNT == 1." end subroutine merge_sort pure subroutine merge(array, mid, buf) ! Merges the two non-decreasing runs `ARRAY(0:MID-1)` and `ARRAY(MID:)` ! using `BUF` as temporary storage, and stores the merged runs into ! `ARRAY(0:)`. `MID` must be > 0, and < `SIZE(ARRAY)-1`. Buffer `BUF` ! must be long enough to hold the shorter of the two runs. character(len=*), intent(inout) :: array(0:) integer(int_index), intent(in) :: mid character(len=len(array)), intent(inout) :: buf(0:) integer(int_index) :: array_len, i, j, k array_len = size(array, kind=int_index) ! Merge first copies the shorter run into `buf`. Then, depending on which ! run was shorter, it traces the copied run and the longer run forwards ! (or backwards), comparing their next unprocessed elements and then ! copying the lesser (or greater) one into `array`. if (mid <= array_len - mid) then ! The left run is shorter. buf(0:mid - 1) = array(0:mid - 1) i = 0 j = mid merge_lower: do k = 0, array_len - 1 if (buf(i) >= array(j)) then array(k) = buf(i) i = i + 1 if (i >= mid) exit merge_lower else array(k) = array(j) j = j + 1 if (j >= array_len) then array(k + 1:) = buf(i:mid - 1) exit merge_lower end if end if end do merge_lower else ! The right run is shorter ! check that it is stable buf(0:array_len - mid - 1) = array(mid:array_len - 1) i = mid - 1 j = array_len - mid - 1 merge_upper: do k = array_len - 1, 0, -1 if (buf(j) <= array(i)) then array(k) = buf(j) j = j - 1 if (j < 0) exit merge_upper else array(k) = array(i) i = i - 1 if (i < 0) then array(0:k - 1) = buf(0:j) exit merge_upper end if end if end do merge_upper end if end subroutine merge pure subroutine reverse_segment(array) ! Reverse a segment of an array in place character(len=*), intent(inout) :: array(0:) integer(int_index) :: lo, hi character(len=len(array)) :: temp lo = 0 hi = size(array, kind=int_index) - 1 do while (lo < hi) temp = array(lo) array(lo) = array(hi) array(hi) = temp lo = lo + 1 hi = hi - 1 end do end subroutine reverse_segment end subroutine char_decrease_ord_sort !end submodule pic_sorting_ord_sort end module pic_sorting_ord_sort